最大子段和(分治与动态规划典例)

最大子段和

 
问题: 给定n个整数(可能为负数)组成的序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的子段和的最大值。当所给的整均为 负数时定义子段和为0,依此定义,所求的最优值为: Max{0,a[i]+a[i+1]+…+a[j]},1<=i<=j<=n 例如,当(a[1],a[2],a[3],a[4],a[5],a[6])=(-2,11,-4,13,-5,-2)时,最大子段和为20。
最大子段和是动态规划中的一种。

目录

分治法

编辑
算法描述如下
针对最大子段和这个具体问题本身的结构,我们还可以从算法设计的策略上对上述O(n^2)计算时间算法进行更进一步的改进。从问题的解结构也可以看出,它适合于用分治法求解。
如果将所给的序列a[1:n]分为长度相等的两段a[1:n/2]和a[n/2+1:n],分别求出这两段的最大子段和,则a[1:n]的最大子段和有三种情况:
(1) a[1:n]的最大子段和与a[1:n/2]的最大子段和相同
(2) a[1:n]的最大子段和与a[n/2+1:n]的最大子段和相同
(3) a[1:n]的最大子段和为a[i]+…+a[j],并且1<=i<=n/2,n/2+1<=j<=n。
对于(1)和(2)两种情况可递归求得,但是对于情况(3),容易看出a[n/2],a[n/2+1]在最大子段中。因此,我们可以在a[1:n/2]中计算出s1=max(a[n/2]+a[n/2-1]+…+a[i]),0<=i<=n/2,并在a[n/2+1:n]中计算出s2= max(a[n/2+1]+a[n/2+2]+…+a[i]),n/2+1<=i<=n。则s1+s2为出现情况(3)的最大子段和。据此可以设计出最大子段和问题的分治算法如下:
时间复杂度:O(NlogN)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
#include<stdio.h>
#define MAX 100
  • 6
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值