不忘初心,方得始终

Objective:小白->程序猿->大神

算法复杂度分析

算法分析的四个渐进表示法:

O、o、Θ、Ω

一般,O里的,取最小的
一般,Ω里的,取最大的

一般分析时间复杂度,且常考虑最坏复杂度,常用O分析:

三法则:

法则一:

如果T1(N)=O(f(N)),T2(N0=O(g(N))

T1(N)+T2(N)=max(O(f(N)),O(g(N)))

T1(N)*T2(N)=O(f(N))*O(g(N))

法则二:

如果T(N)为k次多项式,T(N)=Θ(N^k)  

法则三:

对任意常数k,(logN)^k=O(N)

注意:

忽略调用函数和返回值的开销

声明不计时间

O内无常数,系数,低阶项

一般法则:

法则一:for循环

法则二:嵌套的for循环

法则三:顺序语句

法则四:if-else语句

从不超过判断再加上if和else语句中运行较长的部分的和



阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/ccDLlyy/article/details/52383904
个人分类: 计算机知识点
想对作者说点什么? 我来说一句

算法复杂度分析ppt

2010年09月09日 323KB 下载

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭