中国剩余定理 poj1006

poj1006

问题描述

     人自出生起就有体力,情感和智力三个生理周期,分别为23,28和33天。一个周期内有一天为峰值,在这一天,人在对应的方面(体力,情感或智力)表现最好。通常这三个周期的峰值不会是同一天。现在给出三个日期,分别对应于体力,情感,智力出现峰值的日期。然后再给出一个起始日期,要求从这一天开始,算出最少再过多少天后三个峰值同时出现。

问题分析

      首先我们要知道,任意两个峰值之间一定相距整数倍的周期。假设一年的第N天达到峰值,则下次达到峰值的时间为N+Tk(T是周期,k是任意正整数)。所以,三个峰值同时出现的那一天(S)应满足

      S = N1 + T1*k1 = N2 + T2*k2 = N3 + T3*k3

N1,N2,N3分别为为体力,情感,智力出现峰值的日期, T1,T2,T3分别为体力,情感,智力周期。 我们需要求出k1,k2,k3三个非负整数使上面的等式成立。

     想直接求出k1,k2,k3貌似很难,但是我们的目的是求出S, 可以考虑从结果逆推。根据上面的等式,S满足三个要求:除以T1余数为N1,除以T2余数为N2,除以T3余数为N3。这样我们就把问题转化为求一个最小数,该数除以T1余N1,除以T2余N2,除以T3余N3。这就是著名的中国剩余定理,我们的老祖宗在几千年前已经对这个问题想出了一个精妙的解法。依据此解法的算法,时间复杂度可达到O(1)。下面就介绍一下中国剩余定理。

中国剩余定理介绍

     在《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二(除以3余2),五五数之剩三(除以5余3),七七数之剩二(除以7余2),问物几何?”这个问题称为“孙子问题”,该问题的一般解法国际上称为“中国剩余定理”。具体解法分三步:

  1. 找出三个数:从3和5的公倍数中找出被7除余1的最小数15,从3和7的公倍数中找出被5除余1 的最小数21,最后从5和7的公倍数中找出除3余1的最小数70。
  2. 用15乘以2(2为最终结果除以7的余数),用21乘以3(3为最终结果除以5的余数),同理,用70乘以2(2为最终结果除以3的余数),然后把三个乘积相加(15*2+21*3+70*2)得到和233。
  3. 用233除以3,5,7三个数的最小公倍数105,得到余数23,即233%105=23。这个余数23就是符合条件的最小数。

     就这么简单。我们在感叹神奇的同时不禁想知道古人是如何想到这个方法的,有什么基本的数学依据吗?

中国剩余定理分析

     我们将“孙子问题”拆分成几个简单的小问题,从零开始,试图揣测古人是如何推导出这个解法的。

     首先,我们假设n1是满足除以3余2的一个数,比如2,5,8等等,也就是满足3*k+2(k>=0)的一个任意数。同样,我们假设n2是满足除以5余3的一个数,n3是满足除以7余2的一个数。

     有了前面的假设,我们先从n1这个角度出发,已知n1满足除以3余2,能不能使得 n1+n2 的和仍然满足除以3余2?进而使得n1+n2+n3的和仍然满足除以3余2?

     这就牵涉到一个最基本数学定理,如果有a%b=c,则有(a+kb)%b=c(k为非零整数),换句话说,如果一个除法运算的余数为c,那么被除数与k倍的除数相加(或相减)的和(差)再与除数相除,余数不变。这个是很好证明的。

     以此定理为依据,如果n2是3的倍数,n1+n2就依然满足除以3余2。同理,如果n3也是3的倍数,那么n1+n2+n3的和就满足除以3余2。这是从n1的角度考虑的,再从n2,n3的角度出发,我们可推导出以下三点:

  1. 为使n1+n2+n3的和满足除以3余2,n2和n3必须是3的倍数。
  2. 为使n1+n2+n3的和满足除以5余3,n1和n3必须是5的倍数。
  3. 为使n1+n2+n3的和满足除以7余2,n1和n2必须是7的倍数。

    因此,为使n1+n2+n3的和作为“孙子问题”的一个最终解,需满足:

  1. n1除以3余2,且是5和7的公倍数。
  2. n2除以5余3,且是3和7的公倍数。
  3. n3除以7余2,且是3和5的公倍数。

    所以,孙子问题解法的本质是从5和7的公倍数中找一个除以3余2的数n1,从3和7的公倍数中找一个除以5余3的数n2,从3和5的公倍数中找一个除以7余2的数n3,再将三个数相加得到解。在求n1,n2,n3时又用了一个小技巧,以n1为例,并非从5和7的公倍数中直接找一个除以3余2的数,而是先找一个除以3余1的数,再乘以2。

    这里又有一个数学公式,如果a%b=c,那么(a*k)%b=a%b+a%b+…+a%b=c+c+…+c=kc(k>0),也就是说,如果一个除法的余数为c,那么被除数的k倍与除数相除的余数为kc。展开式中已证明。

    最后,我们还要清楚一点,n1+n2+n3只是问题的一个解,并不是最小的解。如何得到最小解?我们只需要从中最大限度的减掉掉3,5,7的公倍数105即可。道理就是前面讲过的定理“如果a%b=c,则有(a-kb)%b=c”。所以(n1+n2+n3)%105就是最终的最小解。

总结

   经过分析发现,中国剩余定理的孙子解法并没有什么高深的技巧,就是以下两个基本数学定理的灵活运用:

  1. 如果 a%b=c , 则有 (a+kb)%b=c (k为非零整数)。
  2. 如果 a%b=c,那么 (a*k)%b=kc (k为大于零的整数)。

poj1006:

要引入本题解法,先来看一个故事 “韩信点兵”:
      传说西汉大将韩信,由于比较年轻,开始他的部下对他不很佩服。有一次阅兵时,韩信要求士兵分三路纵队,结果末尾多2人,改成五路纵队,结果末尾多3人,再改成七路纵队,结果又余下2人,后来下级军官向他报告共有士兵2395人,韩信立即笑笑说不对(因2395除以3余数是1,不是2),由于已经知道士兵总人数在2300~2400之间,所以韩信根据23,128,233,------,每相邻两数的间隔是105(3、5、7的最小公倍数),便立即说出实际人数应是2333人(因2333=128+20χ105+105,它除以3余2,除以5余3,除以7余2)。这样使下级军官十分敬佩,这就是韩信点兵的故事。 

 

 韩信点兵问题简化:已知 n%3=2,  n%5=3,  n%7=2,  求n。 


  再看我们这道题:

读入p,e,i,d 4个整数

已知(n+d)%23=p;   (n+d)%28=e;   (n+d)%33=i ,求n 。 

 

两道题是一样的。但是韩信当时计算出结果的? 
 韩信用的就是“中国剩余定理”,《孙子算经》中早有计算方法,大家可以查阅相关资料。 
“韩信点兵”问题计算如下: 

因为n%3=2, n%5=3, n%7=2 且 3,5,7互质 (互质可以直接得到这三个数的最小公倍数)

令x= n%3=2 , y= n%5=3 ,z= n%7=2
      使5×7×a被3除余1,有35×2=70,即a=2; 
       使3×7×b被5除余1,用21×1=21,即b=1; 
       使3×5×c被7除余1,用15×1=15,即c=1。 
那么n =(70×x+21×y+15×z)%lcm(3,5,7) = 23 这是n的最小解

 而韩信已知士兵人数在2300~2400之间,所以只需要n+i×lcm(3,5,7)就得到了2333,此时i=22

同样,这道题的解法就是: 

已知(n+d)%23=p;   (n+d)%28=e;   (n+d)%33=i 
       使33×28×a被23除余1,用33×28×8=5544; 
       使23×33×b被28除余1,用23×33×19=14421; 
       使23×28×c被33除余1,用23×28×2=1288。 
      因此有(5544×p+14421×e+1288×i)% lcm(23,28,33) =n+d 

又23、28、33互质,即lcm(23,28,33)= 21252;
      所以有n=(5544×p+14421×e+1288×i-d)%21252

本题所求的是最小整数解,避免n为负,因此最后结果为n= [n+21252]% 21252
那么最终求解n的表达式就是:

n=(5544*p+14421*e+1288*i-d+21252)%21252;



//自己的代码实现
//中国剩余定理
#include <stdio.h>
#include <stdlib.h>
int qiu(int n,int a,int b)
{
    int temp1=a;
    int temp2=b;
    while(temp2!=0){
        int temp=temp1%temp2;
        temp1=temp2;
        temp2=temp;
    }
    int number=a*b/temp1;//a,b的最大公约数
    for(int i=1;;i++){
        if(number*i%n==1)
           return number*i;
    }
}
int main()
{
    int p,e,i,d;
    int n1=23,n2=28,n3=33;
    int num1,num2,num3;
    num1=qiu(n1,n2,n3);//n2和n3的一定倍数且%n1=1
    num2=qiu(n2,n1,n3);
    num3=qiu(n3,n1,n2);
    int count=0;
    int number=21252;//23,28,33的最小公倍数
    while(scanf("%d%d%d%d",&p,&e,&i,&d)!=EOF){
        if(p==-1&&e==-1&&i==-1&&d==-1)
            break;
        count++;
        int result=(num1*p+num2*e+num3*i-d)%number;
        if(result<=0)
            result=result+number;
        printf("Case %d: the next triple peak occurs in %d days.\n",count,result);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值