介绍中国剩余定理

浅析中国剩余定理(CRT)

同余方程组的求解看似复杂,需要求解不定方程组,但实际上利用多项式理论就能够解出特解并且利用解之间的同余关系得到通解。

定理叙述

设幺环R的理想 N 1 , N 2 , ⋯ N r {N_1},{N_2}, \cdots {N_r} N1,N2,Nr两两互素,则对任意给定的r个元素 b 1 , b 2 , ⋯   , b r ∈ R {b_1},{b_2}, \cdots ,{b_r} \in R b1,b2,,brR同余方程组
x ≡ b 1 (   m o d   N 1 ) , x ≡ b 2 (   m o d   N 2 ) , ⋯   , x ≡ b r (   m o d   N r ) {x \equiv {b_1}\left( {\bmod {N_1}} \right)}, \\{x \equiv {b_2}\left( {\bmod {N_2}} \right)} ,\\ \cdots,\\{x \equiv {b_r}\left( {\bmod {N_r}} \right)} xb1(modN1),xb2(modN2),,xbr(modNr)
在R内恒有解,而且它的解   m o d   N 1 ∩ ⋯ ∩ N r \bmod {N_1} \cap \cdots \cap {N_r} modN1Nr
唯一且任意两解同余

写成整数环的形式

在整数环Z上,r个素数生成的主理想 ( N 1 ) , ( N 2 ) , ⋯ ( N r ) \left( {{N_1}} \right),\left( {{N_2}} \right), \cdots \left( {{N_r}} \right) (N1),(N2),(Nr)之交也构成主理想且就是 ( N 1 N 2 ⋯ N r ) \left( {{N_1}{N_2} \cdots {N_r}} \right) (N1N2Nr)而解出任意一个特解就可找到通解:

裴祖定理推论

任意两个互素的整数 a , b a,b a,b满足存在整数u,v使得:
u a + v b = 1 ua+ vb= 1 ua+vb=1
N 1 N 2 ⋯ N i − 1 N i + 1 ⋯ N r {N_1}{N_2} \cdots {N_{i - 1}}N_{i + 1} \cdots {N_r} N1N2Ni1Ni+1Nr
N i {N_i} Ni互素,也即不相同素数的乘积和不属于乘积因数的素数也互素。

解的形式

设令: ∀ i ∈ { 1 , 2 , ⋯   , r } , G i = N 1 N 2 ⋯ N i − 1 N i + 1 ⋯ N r \forall i \in \left\{ {1,2, \cdots ,r} \right\},{G_i} = {N_1}{N_2} \cdots {N_{i - 1}}{N_{i + 1}} \cdots {N_r} i{1,2,,r},Gi=N1N2Ni1Ni+1Nr
注意到: ∀ i , j ∈ { 1 , 2 , ⋯   , r } , i ≠ j , N j ∣ G i \forall i,j \in \left\{ {1,2, \cdots ,r} \right\},i \ne j,{N_j}|{G_i} i,j{1,2,,r},i=j,NjGi
由裴祖定理推论:
∀ i ∈ { 1 , 2 , ⋯   , r } , ∃ u i , v i ∈ Z , s . t . u i G i + v i N i = 1 (1) \forall i \in \left\{ {1,2, \cdots ,r} \right\},\exists {u_i},{v_i} \in Z,s.t.{u_i}{G_i} + {v_i}{N_i} = 1{\rm{ }}\tag{1} i{1,2,,r},ui,viZ,s.t.uiGi+viNi=1(1)
此时将(1)式两边乘以余数并考虑:
b i G i u i = b i − b i v i N i , x = ∑ i = 1 r b i G i u i {b_i}{G_i}{u_i} = {b_i} - {b_i}{v_i}{N_i},x = \sum\limits_{i = 1}^r {{b_i}{G_i}{u_i}} biGiui=bibiviNi,x=i=1rbiGiui
即找到了x一个特解

举个例子

求解同余方程组:
x ≡ 1 (   m o d   5 ) , x ≡ 3 (   m o d   7 ) , x ≡ 5 (   m o d   11 ) {x \equiv {1}\left( {\bmod {5}} \right)}, \\{x \equiv {3}\left( {\bmod {7}} \right)} ,\\{x \equiv {5}\left( {\bmod {11}} \right)} x1(mod5),x3(mod7),x5(mod11)
解:
G 1 = 77 , G 2 = 55 , G 3 = 35 {G_1} = 77,{G_2} = 55,{G_3} = 35 G1=77,G2=55,G3=35
反复利用辗转相除法得到
77 = 5 × 15 + 2 (2.1) 77 = 5 \times 15 + 2 \tag{2.1} 77=5×15+2(2.1)
5 = 2 × 2 + 1 (2.2) 5 = 2 \times 2 + 1\tag{2.2} 5=2×2+1(2.2)
5 − 2 × ( 77 − 5 × 15 ) = 1 ⇒ − 2 × 77 + 31 × 5 = 1 (2.3) 5 - 2 \times \left( {77 - 5 \times 15} \right) = 1 \Rightarrow - 2 \times 77 + 31 \times 5 = 1\tag{2.3} 52×(775×15)=12×77+31×5=1(2.3)
同理 − 1 × 55 + 8 × 7 = 1 (2.4) - 1 \times 55 + 8 \times 7 = 1\tag{2.4} 1×55+8×7=1(2.4)
− 5 × 35 + 16 × 11 = 1 (2.5) - 5 \times 35 + 16 \times 11 = 1\tag{2.5} 5×35+16×11=1(2.5)
特解:
x = − 2 × 77 × 1 + ( − 1 ) × 55 × 3 + ( − 5 ) × 35 × 5 = − 1194 ≡ 346 (   m o d   5 × 7 × 11 ) x = - 2 \times 77 \times 1 + \left( { - 1} \right) \times 55 \times 3 + \left( { - 5} \right) \times 35 \times 5 = - 1194 \equiv 346\left( {\bmod 5 \times 7 \times 11} \right) x=2×77×1+(1)×55×3+(5)×35×5=1194346(mod5×7×11)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值