绘制神经网络结构图

→→绘制神经网络结构图工具链接

以Faster RCNN中VGG16/faster_rcnn_alt_opt/stage1_rpn_train.pt为例

网络结构图如下:
在这里插入图片描述
原pt文件:

name: "VGG_ILSVRC_16_layers"
layer {
   
  name: 'input-data'
  type: 'Python'
  top: 'data'
  top: 'im_info'
  top: 'gt_boxes'
  python_param {
   
    module: 'roi_data_layer.layer'
    layer: 'RoIDataLayer'
    param_str: "'num_classes': 21"  
  }
}
layer {
   
  name: "conv1_1"
  type: "Convolution"
  bottom: "data"
  top: "conv1_1"
  param {
   
    lr_mult: 0
    decay_mult: 0
  }
  param {
   
    lr_mult: 0
    decay_mult: 0
  }
  convolution_param {
   
    num_output: 64
    pad: 1
    kernel_size: 3
  }
}
layer {
   
  name: "relu1_1"
  type: "ReLU"
  bottom: "conv1_1"
  top: "conv1_1"
}
layer {
   
  name: "conv1_2"
  type: "Convolution"
  bottom: "conv1_1"
  top: "conv1_2"
  param {
   
    lr_mult: 0
    decay_mult: 0
  }
  param {
   
    lr_mult: 0
    decay_mult: 0
  }
  convolution_param {
   
    num_output: 64
    pad: 1
    kernel_size: 3
  }
}
layer {
   
  name: "relu1_2"
  type: "ReLU"
  bottom: "conv1_2"
  top: "conv1_2"
}
layer {
   
  name: "pool1"
  type: "Pooling"
  bottom: "conv1_2"
  top: "pool1"
  pooling_param {
   
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
   
  name: "conv2_1"
  type: "Convolution"
  bottom: "pool1"
  top: "conv2_1"
  param {
   
    lr_mult: 0
    decay_mult: 0
  }
  param {
   
    lr_mult: 0
    decay_mult: 0
  }
  convolution_param {
   
    num_output: 128
    pad: 1
    kernel_size: 3
  }
}
layer {
   
  name: "relu2_1"
  type: "ReLU"
  bottom: "conv2_1"
  top: "conv2_1"
}
layer {
   
  name: "conv2_2"
  type: "Convolution"
  bottom: "conv2_1"
  top: "conv2_2"
  param {
   
    lr_mult: 0
    decay_mult: 0
  }
  param {
   
    lr_mult: 0
    decay_mult
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值