pytorch模型保存与加载方法以及使用torch.nn.DataParallel需要注意的问题

一、pytorch保存模型的方法

1.只保存参数

torch.save(model.state_dict(),path)

2.保存整个模型

torch.save(model,path)
二、对应的加载模型的方法

1.只保存参数

model.load_state_dict(torch.load(path))

该方法在加载的时候需要事先定义好跟原模型一致的模型,并在该模型的实例对象上进行加载
2.保存整个模型

model = torch.load(path)
三、使用torch.nn.DataParallel需要注意的问题

在调试https://github.com/yhenon/pytorch-retinanet,默认会使用torch.nn.DataParallel进行多GPU训练
在这里插入图片描述
并且最开始还很奇怪为什么在保存模型时出现下面的形式,这里为什么会多出.module
在这里插入图片描述
于是,顺手改成了上文所述的torch.save(retinanet.state_dict(),……)的形式,结果在加载模型时就出现了下图的问题:
在这里插入图片描述
在这里插入图片描述
可以看出,加载模型的key值中都多了module.,这就需要前后对应好,才能正确加载模型。
如出现类似问题,解决也可参考:https://www.jianshu.com/p/e96a013ab5fd

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值