题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=4713
题目大意:
题意同HDU 3092这不过这题要输出路径。
解题思路:
思路同HDU 3092。
因为n比较大,不能开二维只记录前面一个来 逆着存路径。
所以对于每个状态,把到达它的所有数都保存下来。转移的时候将前面的路径也赋值过来。
dp[i]表示表示不超过i的能分成的最大的最小公倍数的对数。少了的话用1来凑。
注意:输出的时候值小的在前面,+1成环输出。
代码:
#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<string>
#include<cstring>
#include<algorithm>
#include<vector>
#include<map>
#include<set>
#include<stack>
#include<list>
#include<queue>
#define eps 1e-6
#define INF 0x3fffffff
#define PI acos(-1.0)
#define ll __int64
#define lson l,m,(rt<<1)
#define rson m+1,r,(rt<<1)|1
#pragma comment(linker, "/STACK:1024000000,1024000000")
using namespace std;
#define Maxn 10000 //三千内的质数430个
double dp[Maxn+10]; //取对数保证最小公倍数不会溢出
//dp[i]表示i能分成的最大的最小公倍数的对数
bool tmp[Maxn+10];
int pp[Maxn+10],ans[Maxn+10];
vector<int>myv[Maxn+10];
int n,cnt;
void init()
{
cnt=0;
memset(tmp,false,sizeof(tmp));
for(int i=2;i<=Maxn;i++) //素数晒选法
{
if(!tmp[i])
{
pp[++cnt]=i;
for(int j=i*2;j<=Maxn;j+=i)
tmp[j]=true;
}
}
return ;
}
void solve()
{
memset(dp,0,sizeof(dp));
for(int i=0;i<=n;i++)
myv[i].clear();
for(int i=1;i<=cnt&&pp[i]<=n;i++)
{
double tt=log10(pp[i]*1.0);
for(int j=n;j>=pp[i];j--) //相同质数应做为一个整体考虑
{
for(int k=pp[i],num=1;k<=j;k=k*pp[i],num++)
if(dp[j-k]+tt*num>dp[j])
{
dp[j]=dp[j-k]+tt*num;
myv[j]=myv[j-k];
myv[j].push_back(k);
}
}
}
}
int main()
{
init();
//printf("%d\n",cnt);
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
solve();
int t=myv[n].size();
int sum=0;
for(int i=0;i<t;i++)
sum+=myv[n][i];
sum=n-sum;
while(sum--)
myv[n].push_back(1);
sort(myv[n].begin(),myv[n].end());
int s=0;
for(int i=0;i<myv[n].size();i++)
{
for(int j=1;j<myv[n][i];j++)
printf("%d ",s+j+1);
printf("%d",s+1);
if(i!=myv[n].size()-1)
putchar(' ');
s+=myv[n][i];
}
putchar('\n');
}
return 0;
}