题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=3698
题目意思:
给两个n*m矩阵,一个是t矩阵,一个是f矩阵。在矩阵中每行选择一个位置,使相邻两行位置满足关系|j-k|<=f[i,j]+f[i+1,k].且使t值最小。
解题思路:
dp+线段树优化。
dp很容易想到。dp[i][j]=min(dp[i-1][k]+t[i][j]) //其中k和j满足上述关系。
本题的关键是将关系|j-k|<=f[i,j]+f[i+1,k]等价处理,等价于区间【k-f[i-1][k],k+f[i-1][k]】与区间【j-f[i-1][j],j+f[i][j]】有交集。所以可以把钱一行的dp值压入线段树中,使得该区间的最大值小于等于该dp值,然后再查询下一行的区间,如果两区间有交叉的地方一定可以查到。
线段树区间维护一个最小值以及该区间更新的值,注意更新的值要下传给左右区间。
代码:
#include<iostream>
#include<cmath>
#include<cstdio>
#include<sstream>
#include<cstdlib>
#include<string>
#include<cstring>
#include<algorithm>
#include<vector>
#include<map>
#include<set>
#include<stack>
#include<list>
#include<queue>
#include<ctime>
#include<bitset>
#define eps 1e-6
#define INF 0x3f3f3f3f
#define PI acos(-1.0)
#define ll __int64
#define LL long long
#define lson l,m,(rt<<1)
#define rson m+1,r,(rt<<1)|1
#define M 1000000007
#pragma comment(linker, "/STACK:1024000000,1024000000")
using namespace std;
#define Maxn 110
#define Maxm 5100
int dp[Maxm];
struct Node
{
int Min,add;
}node[Maxm<<2];
void build(int l,int r,int rt)
{
node[rt].Min=node[rt].add=INF;
if(l==r)
return ;
int m=(l+r)>>1;
build(lson);
build(rson);
}
void pushup(int rt)
{
node[rt].Min=min(node[rt<<1].Min,node[rt<<1|1].Min);
}
void pushdown(int rt)
{
if(node[rt].add!=INF)
{
node[rt<<1].add=min(node[rt<<1].add,node[rt].add);
node[rt<<1].Min=min(node[rt<<1].Min,node[rt].add);
node[rt<<1|1].add=min(node[rt<<1|1].add,node[rt].add);
node[rt<<1|1].Min=min(node[rt<<1|1].Min,node[rt].add);
node[rt].add=INF;
}
}
void update(int l,int r,int rt,int L,int R,int va)
{
if(L<=l&&R>=r)
{
node[rt].add=min(node[rt].add,va);
node[rt].Min=min(node[rt].Min,va);
return ;
}
int m=(l+r)>>1;
pushdown(rt);
if(L<=m)
update(lson,L,R,va);
if(R>m)
update(rson,L,R,va);
pushup(rt);
}
int query(int l,int r,int rt,int L,int R)
{
if(L<=l&&R>=r)
return node[rt].Min;
int m=(l+r)>>1;
pushdown(rt);
int res=INF;
if(L<=m)
res=min(res,query(lson,L,R));
if(R>m)
res=min(res,query(rson,L,R));
return res;
}
int t[Maxn][Maxm],f[Maxn][Maxm];
int main()
{
int n,m;
while(scanf("%d%d",&n,&m)&&n+m)
{
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
scanf("%d",&t[i][j]);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
scanf("%d",&f[i][j]);
for(int i=1;i<=m;i++)
dp[i]=t[1][i];
for(int i=1;i<=n-1;i++)
{
build(1,m,1);
for(int j=1;j<=m;j++)
update(1,m,1,j-f[i][j],j+f[i][j],dp[j]);
for(int j=1;j<=m;j++)
dp[j]=query(1,m,1,j-f[i+1][j],j+f[i+1][j])+t[i+1][j];
}
int ans=INF;
for(int i=1;i<=m;i++)
ans=min(ans,dp[i]);
printf("%d\n",ans);
}
return 0;
}