dp(LCS转化成LIS)uva 10635 - Prince and Princess

该博客介绍了如何将求解两个数组的最长公共子序列(LCS)问题转化为求解最长递增子序列(LIS),并利用O(n log n)的时间复杂度解决UVA 10635 - Prince and Princess题目。通过将数组映射,将原问题简化为求解第二个数组的LIS。
摘要由CSDN通过智能技术生成

题目链接:

http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=1576

题目意思:

有两个数组,求两个数组的最长公共子序列长度。两个数组中数都在1~n*n范围内,且数组内没有任意两个数相同。

解题思路:

常见的LCS时间复杂度为o(n*n)肯定行不通,考虑题目的特殊性,数的范围1~n*n,且任意两个数都不相同。如果把第一个数组对应成1,2,3,4...p+1。把第二个数组也对应起来,实际上问题就转化为了求第二个数组的LIS(可以用o(nlgn)的算法求解。问题就得到了解决。

代码:

//#include<CSpreadSheet.h>

#include<iostream>
#include<cmath>
#include<cstdio>
#include<sstream>
#include<cstdlib>
#include<stri
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值