题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=1568
题目意思:
给一个i,让你求出第i个febonacci数的前四位,不足四位的直接输出。
解题思路:
由feibonacci数列的通项公式an=1/√5*(((1+√5)/2)^n+((√5-1)/2)^n)
当n比较大的时候可以舍掉(√5-1)/2)^n 因为越来越小,不到一,可以舍去
log10(an)=log10(1/√5)+n*log10((1+√5)/2) =p;
令p=p1+p2(其中p1为p的整数部分,p2为p的小数部分),则10^(p1+p2)=10^p1*10^p2=an 其中把10^p1为an的尾部的零,去掉后不影响高位的计算。
详细处理见代码。
代码:
#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<string>
#include<cstring>
#include<algorithm>
#include<vector>
#include<map>
#include<stack>
#include<list>
#include<queue>
#define eps 1e-6
#define INF (1<<30)
#define PI acos(-1.0)
using namespace std;
#define ba sqrt(5.0)
/*
freopen("data.in","r",stdin);
freopen("data.out","w",stdout);
*/
//fabonacci 通项公式an=1/√5*(((1+√5)/2)^n+((√5-1)/2)^n)
//当n比较大的时候可以舍掉(√5-1)/2)^n 因为越来越小,不到一
int save[30];
int main()
{
save[0]=0;
save[1]=1;
for(int i=2;i<20;i++)
{
save[i]=save[i-1]+save[i-2];
// printf("%d\n",save[i]);
} //前二十位都是小于5位的,直接算出来就行了
int n;
while(scanf("%d",&n)!=EOF)
{
if(n<20)
{
printf("%d\n",save[n]);
continue;
}
double temp=log10(1.0/ba)+n*log10((ba+1.0)/2.0); //以十为底求出对数
temp-=floor(temp);//除掉整数部分,也就是save[n]的尾部的零
temp=pow(10.0,temp); //算出高位非零的部分
while(temp<1000) //不足四位补零凑齐四位
temp*=10;
while(temp>=10000) //超过五位的除掉低位
temp/=10;
printf("%d\n",(int)temp);
}
return 0;
}