输入字符串,建立一个单链表,操作单链表使每相邻的两个字符交换位置

    题目如上图所示 ,代码如下: #include <iostream> #include <string> using namespace std; struct linknode{ c...

2018-10-14 09:42:40

阅读数 154

评论数 0

POJ 1160 Post Office :从n个村庄选m个点建邮局,使得每个村庄到邮局的距离和最小

Post Office Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 15966   Accepted: 8671   Description There is a straight ...

2018-09-20 18:51:28

阅读数 387

评论数 0

c++中指针和引用的区别

原文地址:https://www.cnblogs.com/Wangjiaq/p/9220715.html 指针:        指针是编程语言中的一个对象,利用地址,它的值直接指向存在电脑存储器中另一个地方的值。由于通过地址能找到所需的变量单元,可以说,地址指向该变量单元。因此,将地址形象化的...

2018-09-13 10:45:38

阅读数 73

评论数 0

决策树——缺失值的处理

原文地址:https://blog.csdn.net/u012328159/article/details/79413610 现实生活中的数据集中的样本通常在某系属性上是缺失的,如果属性值缺失的样本数量比较少,我们可以直接简单粗暴的把不完备的样本删除掉,但是如果有大量的样本都有属性值的缺失,那么...

2018-09-12 09:30:17

阅读数 553

评论数 0

决策树——连续值的处理

原文地址:https://blog.csdn.net/u012328159/article/details/79396893 | 连续值处理     因为连续属性的可取值数目不再有限,因此不能像前面处理离散属性枚举离散属性取值来对结点进行划分。因此需要连续属性离散化,常用的离散化策略是二分法,...

2018-09-12 09:28:32

阅读数 1234

评论数 0

单链表的实现及基本操作总结

原文地址 结点的引入       链表是一种链式存储结构,链式存储结构的特点是用一组任意的存储单元存储数据元素。为了能正确表示数据元素之间的线性关系,需引入结点概念。一个结点表示链表中的一个数据元素,节点中除了储存数据元素的信息, 还必须存放指向下一个节点的的指针(单、双链表的最后一个节点除外...

2018-09-04 15:53:27

阅读数 172

评论数 0

各种排序算法的详细总结与比较

最近开始找工作了,总结一些基本问题供复习。 排序算法可以说是一项基本功,解决实际问题中经常遇到,针对实际数据的特点选择合适的排序算法可以使程序获得更高的效率,有时候排序的稳定性还是实际问题中必须考虑的,这篇博客对常见的排序算法进行整理,包括:插入排序、选择排序、冒泡排序、快速排序、堆排序、归并排...

2018-09-04 15:40:46

阅读数 2304

评论数 1

机器学习中的标准化和归一化

今天在看别人博客的时候看到标准化和归一化,这是一个很基础的问题,同时也能反映出对机器学习知识的掌握程度,所以这里特意查阅资料然后整理知识点,方便以后复习。 1、归一化和标准化 归一化和标准化经常被搞混,程度还比较严重,非常干扰大家的理解。为了方便后续的讨论,必须先明确二者的定义。 归一化...

2018-08-20 10:22:39

阅读数 597

评论数 1

对xgboost的一些理解

xgboost 简介 xgboost 的全称是eXtreme Gradient Boosting,由华盛顿大学的陈天奇博士提出,在Kaggle的希格斯子信号识别竞赛中使用,因其出众的效率与较高的预测准确度而引起了广泛的关注。 与GBDT的区别 GBDT算法只利用了一阶的导数信息...

2018-08-20 09:45:31

阅读数 2258

评论数 0

详解最大熵模型

熵的概念在统计学习与机器学习中真是很重要,熵的介绍在这里:信息熵 。今天的主题是最大熵模型(Maximum Entropy Model,以下简称MaxEnt),MaxEnt 是概率模型学习中一个准则,其思想为:在学习概率模型时,所有可能的模型中熵最大的模型是最好的模型;若概率模型需要满足一些约束,...

2018-08-19 23:21:00

阅读数 2737

评论数 0

详解提升树模型(boosting tree)和梯度提升树模型(GBDT)

1、集成方法之Boosting Boosting方法是集成学习中重要的一种方法,在集成学习方法中最主要的两种方法为Bagging和Boosting,在Bagging中,通过对训练样本重新采样的方法得到不同的训练样本集,在这些新的训练样本集上分别训练学习器,最终合并每一个学习器的结果,作为最终的学...

2018-08-16 18:03:17

阅读数 657

评论数 0

随机森林(Ransom Forest)

1 什么是随机森林?   作为新兴起的、高度灵活的一种机器学习算法,随机森林(Random Forest,简称RF)拥有广泛的应用前景,从市场营销到医疗保健保险,既可以用来做市场营销模拟的建模,统计客户来源,保留和流失,也可用来预测疾病的风险和病患者的易感性。   那随机森林到底是怎样的一种算...

2018-08-16 17:41:29

阅读数 78

评论数 0

详解决策树相关内容

前言:决策树(Decision Tree)是一种基本的分类与回归方法,本文主要讨论分类决策树。决策树模型呈树形结构,在分类问题中,表示基于特征对实例进行分类的过程。它可以认为是if-then规则的集合,也可以认为是定义在特征空间与类空间上的条件概率分布。相比朴素贝叶斯分类,决策树的优势在于构造过程...

2018-08-16 16:56:28

阅读数 72

评论数 0

详解逻辑回归(LR)计算过程

原文地址:http://blog.csdn.net/dongtingzhizi/article/details/15962797 1.引言 本文主要介绍以下三个方面的内容: (1)Logistic Regression的基本原理,分布在第二章中; (2)Logistic Regressio...

2018-08-16 12:30:04

阅读数 3357

评论数 0

详解朴素贝叶斯分类算法

原文地址:https://blog.csdn.net/amds123/article/details/70173402 带你搞懂朴素贝叶斯分类算法   带你搞懂朴素贝叶斯分类算 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。而朴素朴素贝叶斯分类是贝叶斯分...

2018-08-15 22:25:31

阅读数 1020

评论数 1

机器学习——LR与SVM的比较

为什么把SVM和LR放在一起进行比较? 一是因为这两个模型应用广泛。  二是因为这两个模型有很多相同点,在使用时容易混淆,不知道用哪个好,特别是对初学者。 一、LR与SVM的相同点: 第一,LR和SVM都是分类算法。 看到这里很多人就不会认同了,因为在很大一部分人眼里,LR是回归算法。我是...

2018-08-15 22:05:17

阅读数 502

评论数 0

解释机器学习中的熵、联合熵、条件熵、相对熵和交叉熵

原文地址:https://www.cnblogs.com/kyrieng/p/8694705.html 1、信息熵 (information entropy) 熵 (entropy) 这一词最初来源于热力学。1948年,克劳德·爱尔伍德·香农将热力学中的熵引入信息论,所以也被称为香农熵 (Sh...

2018-08-15 11:06:03

阅读数 527

评论数 0

机器学习中的正则化项(L1, L2)的理解

正则化(Regularization) 机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作ℓ1-norm和ℓ2-norm,中文称作L1正则化和L2正则化,或者L1范数和L2范数。 L1正则化和L2正则化可以看做是损失函数的惩罚项。所谓『惩罚』是指对损失函...

2018-07-27 13:01:31

阅读数 119

评论数 0

EM算法(Expectation Maximization Algorithm)详解

EM算法(Expectation Maximization Algorithm)详解 主要内容  EM算法简介 预备知识  极大似然估计 Jensen不等式 EM算法详解  问题描述 EM算法推导 EM算法流程 EM算法优缺点以及应用 1、...

2018-07-26 23:01:20

阅读数 159

评论数 0

C++中的1LL

今天刷题看到了这段代码: class Solution { public: /** * @param key: A string you should hash * @param HASH_SIZE: An integer * @return: An in...

2018-07-25 23:07:45

阅读数 258

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭