堆排序算法

###简介
  堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。可以利用数组的特点快速定位指定索引的元素。堆分为大根堆和小根堆,是完全二叉树。大根堆的要求是每个节点的值都不大于其父节点的值,即A[PARENT[i]] >= A[i]。在数组的非降序排序中,需要使用的就是大根堆,因为根据大根堆的要求可知,最大的值一定在堆顶。堆排序的平均时间复杂度为Ο(nlogn) 。
  1991年的计算机先驱奖获得者、斯坦福大学计算机科学系教授罗伯特·弗洛伊德(Robert W.Floyd)和威廉姆斯(J.Williams)在1964年共同发明了著名的堆排序算法( Heap Sort )。

###算法步骤

  1. 先将初始文件R[1…n]建成一个大根堆,此堆为初始的无序区
  2. 再将关键字最大的记录R[1](即堆顶)和无序区的最后一个记录R[n]交换,由此得到新的无序区R[1…n-1]和有序区R[n],且满足R[1…n-1].keys≤R[n].key
  3. 由于交换后新的根R[1]可能违反堆性质,故应将当前无序区R[1…n-1]调整为堆。然后再次将R[1…n-1]中关键字最大的记录R[1]和该区间的最后一个记录R[n-1]交换,由此得到新的无序区R[1…n-2]和有序区R[n-1…n],且仍满足关系R[1…n-2].keys≤R[n-1…n].keys,同样要将R[1…n-2]调整为堆。
    ……
  4. 直到无序区只有一个元素为止。

###演示图
堆排序

以上部分来自网络收集,感谢原作者分享!

###详解

  1. 建堆,建堆是不断调整堆的过程,从len/2处开始调整,一直到第一个节点,此处len是堆中元素的个数。建堆的过程是线性的过程,从len/2到0处一直调用调整堆的过程,相当于o(h1)+o(h2)…+o(hlen/2) 其中h表示节点的深度,len/2表示节点的个数,这是一个求和的过程,结果是线性的O(n)。
  2. 调整堆:调整堆在构建堆的过程中会用到,而且在堆排序过程中也会用到。利用的思想是比较节点i和它的孩子节点left(i),right(i),选出三者最大(或者最小)者,如果最大(小)值不是节点i而是它的一个孩子节点,那边交互节点i和该节点,然后再调用调整堆过程,这是一个递归的过程。调整堆的过程时间复杂度与堆的深度有关系,是lgn的操作,因为是沿着深度方向进行调整的。
  3. 堆排序:堆排序是利用上面的两个过程来进行的。首先是根据元素构建堆。然后将堆的根节点取出(一般是与最后一个节点进行交换),将前面len-1个节点继续进行堆调整的过程,然后再将根节点取出,这样一直到所有节点都取出。堆排序过程的时间复杂度是O(nlgn)。因为建堆的时间复杂度是O(n)(调用一次);调整堆的时间复杂度是lgn,调用了n-1次,所以堆排序的时间复杂度是O(nlgn)。

###算法分析
  堆排序的时间,主要由建立初始堆和反复重建堆这两部分的时间开销构成,它们均是通过调用Heapify实现的。
  
  平均性能:O(N*logN)。

由于建初始堆所需的比较次数较多,所以堆排序不适宜于记录数较少的文件。堆排序是就地排序,辅助空间为O(1).
  它是不稳定的排序方法。(排序的稳定性是指如果在排序的序列中,存在前后相同的两个元素的话,排序前 和排序后他们的相对位置不发生变化)。

###代码示例

/*
 * HeapSortDemo.java
 * 作者:IccBoY
 * 2016-1-15 创建文件
 */
package com.iccboy.study.sort;

import java.util.Arrays;

/**
 ************************************************* 
 * 堆排序
 * 
 * @version 1.0.0
 * @author iccboy
 ************************************************* 
 */
public class HeapSortDemo {

    /**
     * 构建大根堆
     * 
     * @param data
     * @since 1.0.0
     * @author iccboy 2016-1-15 创建方法
     */
    public static void buildMaxHeapify(int[] data) {
        // 没有子节点的才需要创建最大堆,从最后一个的父节点开始
        int startIndex = getParentIndex(data.length - 1);
        // 从尾端开始创建最大堆,每次都是正确的堆
        for (int i = startIndex; i >= 0; i--) {
            maxHeapify(data, data.length, i);
        }
    }

    /**
     * 创建最大堆
     * 
     * @param data
     * @param heapSize
     *            需要创建最大堆的大小,一般在sort的时候用到,因为最大值放在末尾,末尾就不再归入最大堆了
     * @param index
     *            当前需要创建最大堆的位置
     * @since 1.0.0
     * @author iccboy 2016-1-15 创建方法
     */
    private static void maxHeapify(int[] data, int heapSize, int index) {
        // 当前点与左右子节点比较
        int left = getChildLeftIndex(index);
        int right = getChildRightIndex(index);

        int largest = index;
        if (left < heapSize && data[index] < data[left]) {
            largest = left;
        }
        if (right < heapSize && data[largest] < data[right]) {
            largest = right;
        }
        // 得到最大值后可能需要交换,如果交换了,其子节点可能就不是最大堆了,需要重新调整
        if (largest != index) {
            int temp = data[index];
            data[index] = data[largest];
            data[largest] = temp;
            maxHeapify(data, heapSize, largest);
        }
    }

    /**
     * 
     * 排序,最大值放在末尾,data虽然是最大堆,在排序后就成了递增的。 每次将堆顶的放到 最后一个叶子节点上,然后在对 n-1进行最大堆移动,
     * 完后堆顶又是一个最大值,重复下去。
     * 
     * @param data
     * @since 1.0.0
     * @author iccboy 2016-1-15 创建方法
     */
    public static void heapSort(int[] data) {
        // 末尾与头交换,交换后调整最大堆
        for (int i = data.length - 1; i > 0; i--) {
            int temp = data[0];
            data[0] = data[i];
            data[i] = temp;
            maxHeapify(data, i, 0);
        }
    }

    /**
     * 父节点位置
     * 
     * @param current
     * @return
     */
    private static int getParentIndex(int current) {
        return (current - 1) >> 1;
    }

    /**
     * 左子节点position注意括号,加法优先级更高
     * 
     * @param current
     * @return
     */
    private static int getChildLeftIndex(int current) {
        return (current << 1) + 1;
    }

    /**
     * 右子节点position
     * 
     * @param current
     * @return
     */
    private static int getChildRightIndex(int current) {
        return (current << 1) + 2;
    }

    private static void print(int[] data) {
        int pre = -2;
        for (int i = 0; i < data.length; i++) {
            if (pre < (int) getLog(i + 1)) {
                pre = (int) getLog(i + 1);
                System.out.println();
            }
            System.out.print(data[i] + "|");
        }
    }

    /**
     * 以2为底的对数
     * 
     * @param param
     * @return
     */
    private static double getLog(double param) {
        return Math.log(param) / Math.log(2);
    }
    
    public static void main(String[] args) {
        int[] sort = new int[] { 1, 0, 10, 20, 3, 5, 6, -4, 9, 8, -12, 5, 34,
                17 };
        buildMaxHeapify(sort);
        heapSort(sort);
        System.out.println(Arrays.toString(sort));
        print(sort);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IccBoY

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值