斐波那契数列的一种计算方法

#include <cstdio>
#include <map>
using namespace std;
map<int, int> m;
const int md = 19999997;//需要模的数
long long f(const int x) {
    if(x <= 2) return x ? 1 : 0;
    if(m.count(x)) return m[x];
    const int k = x >> 1;
    const long long a = f(k);
    const long long b = f(k + 1);
    if(x & 1) return m[x] = (a * a + b * b) % md;
    else return m[x] = a * (b + b - a + md) % md;
}

int main() {
    int n;
    scanf("%d", &n);
    printf("%d\n", int(f(n + 1)));
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值