计算斐波那契数列的几种方法

一、递归

private static long f1(int n) {
    if (n < 1) {
        return 0;
    } else if (n < 2) {
        return 1;
    } else {
        return f1(n - 1) + f1(n - 2);
    }
}

二、缓存

private static long f2(int n) {
    HashMap<Integer, Long> map = new HashMap<>();
    map.put(0, 0L);
    map.put(1, 1L);
    return memo(map, n);
}

private static long memo(HashMap<Integer, Long> map, int n) {
    if (!map.containsKey(n)) {
        map.put(n, memo(map, n - 1) + memo(map, n - 2));
    }
    return map.get(n);
}

三、动态

private static long f3(int n) {
    if (n < 2) {
        return n;
    }
    long prev = 0, curr = 1;
    for (int i = 0; i < n - 1; i++) {
        long sum = prev + curr;
        prev = curr;
        curr = sum;
    }
    return curr;
}

对比结果

n=20

执行方法计算结果循环次数时间复杂度
f1676521891O(2n)
f2676539O(n)
f3676529O(1)

n=50

执行方法计算结果循环次数时间复杂度
f11258626902540730022147O(2n)
f21258626902599O(n)
f31258626902549O(1)

从以上结果分析可以看出,递归效率最低,循环次数呈指数增长。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值