传统图数据分析采用监督学习框架,通过人为特征提取或端到端图深度学习模型将图数据作为输入,经过训练后,挖掘图数据中的有效信息,输出预测结果。虽然这类图监督学习方法在很多任务上取得了显著成功,但仍面临以下问题:依赖大量人工标注数据;由于过拟合导致泛化能力差以及面向标签相关的攻击时模型鲁棒性差。不依赖于人工标注的自监督学习正在成为图深度学习的趋势。图对比学习期望学到一个编码模型,使得相似的节点(图)经过编码模型后得到相似的表示,不相似的节点(图)得到差异较大的表示。现有的方法可以总结成一个同一的框架,首先定义正负例并利用正例生成器和负例生成器分别得到正负样本。接着将这些样本输入到编码模型后得到对应的表示。最后设计一个将正负样本表示区分开的损失函数,进行参数优化。
图对比学习综述
最新推荐文章于 2025-03-05 19:31:48 发布