相关概念辨析

(1)小样本学习:模仿人类用很少的样本迅速识别新事物的能力,FSL期望模型能在学习了大量数据后,用极少的样本迅速学习新类别。主要方法分为基于微调、数据增强和迁移学习。

(2)单样本学习:单样本学习是FSL的特例,当每个类别只有一个样本时,这个问题成为单样本学习。由于在多数情况下两者的设定较为相似,因此通常可以互换使用。

(3)零样本学习(ZSL):ZSL则是一个更为极端的情况,当没有样本可供学习时,模型需通过其他方式(如类别的语义属性)来进行类别识别。ZSL的理念借鉴了人类的学习和推理能力,使计算机也具备了一定的迁移和推理能力

(4)元学习:元学习常被称作“学会学习”,它旨在提取多次学习经历中的经验,并使用这些经验来提升未来的学习性能。

元学习方法可以利用已有知识来解决当前学习问题,并通过不断积累知识来提高系统稳定性和可靠性。

(5)迁移学习:就像骑自行车后更易学会摩托车,迁移学习让机器用在某任务上学到的知识解决新任务,迁移学习在数据丰富的旧域与数据匮乏的新域之间建立了桥梁。它可以显著减少在目标领域中构建机器学习模型所需的数据量

(6)增量学习:与FSCIL稍有不同的是,增量学习为每个新增类别提供了充足的样本。这个领域也被称作持续学习或终身学习。

基于重放的增量学习,基于重放的方法一般分为两种,一种是保存旧任务的例子,另一种是使用生成模型记忆旧任务数据的分布。

incremental learning 增量学习的能力就是能够不断处理现实世界中连续的信息流,在吸收新知识的同时保留甚至整合、优化旧知识的能力。 

增量学习致力于解决模型训练的一个普遍缺陷:灾难性遗忘(catastrophic forgetting) 也就是说一般的机器学习模型(尤其是基于反向传播的深度学习方法),在新任务训练时,在旧任务上的表现通常会显著下降。 

造成灾难性遗忘的主要原因是传统模型假设数据分布是固定或平稳的,训练样本是独立同分布的。 所以模型可以一遍又一遍看到所有任务相同的数据,但当数据变为连续数据流时,训练数据的分布是非平稳的,模型从非平稳数据中连续不断获取新知识,新知识会干扰旧知识,从而导致模型性能会快速下降,甚至完全覆盖或遗忘以前学习到的旧知识。 

为了克服灾难性遗忘,我们希望模型一方面必须表现出从新数据中整合新知识和提炼已有知识的能力(可塑性),另一方面又必须防止新输入对已有知识的显著干扰(稳定性)。这两个互相冲突的需求构成了所谓的「稳定性-可塑性困境(stability-plasticity dilemma)」

解决灾难性遗忘最简单粗暴的方案就是使用所有已知的数据重新训练网络参数,以适应数据分布随时间的变化。尽管从头训练模型的确完全解决了灾难性遗忘问题,但这种方法效率非常低,极大地阻碍了模型实时地学习新数据。而增量学习的主要目标就是在计算和存储资源有限的条件下,在稳定性-可塑性困境中寻找效用最大的平衡点。

增量学习和持续学习continual learning ,终身学习 lifelong learning 概念大致是等价的,他们都是在连续的数据流中训练模型,随着时间推移,更多的数据逐渐可用,同时旧数据可能由于存储限制或隐私保护等原因逐渐不可用,并且学习任务的类型和数量没有预定义(例如分类任务中的类别数)

尤其要注意增量学习和在线学习的区别,在线学习通常要求每个样本只能使用一次,且数据全都来自于同一任务,而增量学习是多任务的,但它允许在进入下一个任务之前多次处理当前任务的数据。 

基于正则化的增量学习:基于正则化的增量学习的主要思想是通过给新任务的损失函数施加约束的方法来保护旧知识不被新知识覆盖。这类方法通常不需要用旧数据来让模型复习已学习的任务,因此是最优雅的一类增量学习方法。learning without forgetting 提出的LwF算法是基于深度学习的增量学习的里程碑。

fine-tuning 微调,微调没有旧任务参数和样本的指导,因此模型在旧任务上的表现几乎一定会变差,会发生灾难性遗忘。

联合训练joint training 联合训练相当于在所有已知数据上重新训练模型,效果最好,因此通常被认为是增量学习性能的上界。但训练成本过高。 

特征抽取feature extraction 。

lwf算法来源于knowledge distillation ,即使得新模型在新任务上的预测和旧模型在新任务上的预测相近。 

具体来说,LwF算法先得到旧模型在新任务上的预测值,在损失函数中引入新模型输出的蒸馏损失,然后用微调的方法在新任务上训练模型,从而避免新任务的训练过分调整旧模型的参数而导致新模型在旧任务上的性能下降。 LwF方法高度依赖于新旧任务之间的相关性,当任务差异太大会出现任务混淆(inter-task confusion),并且一个任务的训练时间会随着学习任务的数量线性增长,同时引入的正则项通常不能有效约束模型在新任务上的优化过程。 

总体来说,基于回放的增量学习的主要缺点是需要额外的计算资源和存储空间用于回忆旧知识,当任务种类不断增多时,要么训练成本会变高,要么代表样本的代表性会减弱,同时在实际生产环境中,这种方法还可能存在数据隐私泄露问题。 

  • 5
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值