leetcode 221
关键:
(1)dp数组:遍历matrix中的每个元素,站在以遍历时的每个元素为正方形右下角的角度,dp在每个元素对应的位置上取正方形的边长为值。所以dp维度和matrix一样,元素取值含义为:以该元素为右下角的最正方形的边长
(2)递推公式:要确定正方形右下角元素对应的最大正方形边长,依赖该元素左边、上面、左上三个位置在dp数组中的取值。
- matrix[i][j] == “1” : dp[i][j] = min(dp[i-1][j],dp[i][j-1],dp[i-1][j-1]) + 1
- 否则为0
(3)初始化:递推公式涉及到-1的计算,因此初始化dp的第0行和第0列,当matrix对应元素为“1”时,dp对应位置取值为1
(4)遍历顺序:因为递推公式考虑左、上、左上三个方向,因此按正序顺序遍历即可保证遍历到当前位置时,dp数组中左、上、左上位置的值已经更新过了。
class Solution:
def maximalSquare(self, matrix: List[List[str]]) -> int:
r, c = len(matrix), len(matrix[0])
dp = [[0]*c for _ in range(r)]
max_record = 0
#initial
for j in range(c):
if matrix[0][j] == "1":
dp[0][j] = 1
max_record = max(max_record,dp[0][j])
for i in range(r):
if matrix[i][0] == "1":
dp[i][0] = 1
max_record = max(max_record,dp[i][0])
if r==1 or c == 1:
return max_record
for i in range(r):
for j in range(c):
if matrix[i][j] == "1":
dp[i][j] = min(dp[i-1][j],dp[i][j-1],dp[i-1][j-1]) + 1
if dp[i][j] > max_record:
max_record = dp[i][j]
return max_record**2
这篇博客详细介绍了如何利用动态规划解决LeetCode上的221题——找到二维矩阵中最大的正方形。核心在于构建一个与矩阵大小相同的dp数组,通过递推公式计算每个元素对应的正方形边长,并初始化dp的第一行和第一列。遍历顺序从左上到右下,确保在计算当前位置时,依赖的dp值已更新。
662

被折叠的 条评论
为什么被折叠?



