题目:
在一个由 ‘0’ 和 ‘1’ 组成的二维矩阵内,找到只包含 ‘1’ 的最大正方形,并返回其面积。
示例:
输入:
matrix = [[“1”,“0”,“1”,“0”,“0”],[“1”,“0”,“1”,“1”,“1”],[“1”,“1”,“1”,“1”,“1”],[“1”,“0”,“0”,“1”,“0”]]
输出:4
思路:
动态规划
定义一个动态矩阵,其中每个位置表示以当前位置为右下角,能够得到的最大正方形的边长。
初始化为全0,然后遍历矩阵,当遍历位置的数为0时直接跳过即可。
- 当遍历位置的数为1时,才能作为正方形的右下角,然后判断。
- 如果遍历的位置是第一行或者第一列,那能取到的最大变长就是1。
- 在其他位置的话,就由当前位置向上看,向左看,向对角线方向看,连续是1的长度是多少,取这三个方向中的最小的长度,因为能构成的正方形边长取决于最小的,然后再加上当前位置的1,得到边长。
- 更新结果中的最大边长,最后返回边长的平方,即面积。
class Solution(object):
def maximalSquare(self, matrix):
"""
:type matrix: List[List[str]]
:rtype: int
"""
m = len(matrix)
if m == 0:
return 0
n = len(matrix[0])
dp = [[0]* n for _ in range(m)]
ans = 0
for i in range(m):
for j in range(n):
if matrix[i][j] == '1':
if i == 0:
dp[i][j] = 1
elif j == 0:
dp[i][j] = 1
else :
dp[i][j] = min(dp[i-1][j],dp[i][j-1],dp[i-1][j-1]) + 1
ans = max(ans,dp[i][j])
return ans * ans