鸿蒙OpenHarmonyOS 并发编程框架 FFRT
简介
FFRT: Function Flow Runtime,一种并发编程框架,提供以数据依赖的方式构建异步并发任务的能力;包括数据依赖管理、任务执行器、系统事件处理等。并采用基于协程的任务执行方式,可以提高任务并行度、提升线程利用率、降低系统线程总数;充分利用多核平台的计算资源,保证系统对所有资源的集约化管理。最终解决系统线程资源滥用问题,打造极致用户体验。
功能介绍详见: FFRT 用户指南
目录
├── benchmarks # 性能对比测试用例
├── docs # 用户指南
├── examples # 使用案例
├── interfaces # 对外接口目录
│ └── kits
│ ├── c
│ └── cpp
├── scripts
├── src
│ ├── core # 依赖管理模块
│ ├── dfx # 维测功能
│ │ ├── bbox # 黑匣子功能实现
│ │ ├── log # 日志功能
│ │ └── trace # trace 功能
│ ├── eu # 执行单元
│ ├── internal_inc # 对内接口目录
│ ├── queue
│ ├── sched
│ ├── sync
│ └── util
├── test
└── tools
└── ffrt_trace_process
约束
编译构建
Linux 编译
当前 FFRT 编译依赖三方安全库的功能,需要把三方安全库的代码一并下载到本地。
三方安全库代码仓:[third_party_bounds_checking_function]https://gitee.com/openharmony/third_party_bounds_checking_function>
注意:在 FFRT 代码同目录新建文件夹
third_party
,再将安全库代码放到third_party
下,文件夹命名要求为bounds_checking_function
.文件结构示意如下:
├── resourceschedule_ffrt
├── third_party
│ └── bounds_checking_function
再进入到 ffrt 代码路径下,执行 scripts 下的 shell 脚本 (
sh scripts/run_example.sh
)。
LOG 配置
- LOG 输出函数可以查看头文件
ffrt_log_api.h
- 提供 4 个日志级别:
FFRT_LOG_ERROR = 0
,FFRT_LOG_WARN = 1
,FFRT_LOG_INFO = 2
,FFRT_LOG_DEBUG = 3
,可通过静态编译宏FFRT_LOG_LEVEL
来设置日志级别,默认为ERROR
- 可通过环境变量
FFRT_LOG_LEVEL
动态设置 FFRT 日志级别。示例,设置日志 DEBUG 级别:
export FFRT_LOG_LEVEL=3 # 3 为 FFRT_LOG_DEBUG 的值
Benchmarks
测试场景
fork_join
:通过构造 fork/join 执行时间,模拟线程创建和堵塞场景;fib
:通过构造斐波那契序列,模拟嵌套调用场景;face_story
:通过构造人脸数据,模拟人脸检测场景;
测试方法
cd benchmarks
./benchmarks count # count 表明执行次数
测试结果
- 测试数据和分析归档到
benchmarks/output/tag_${stamp}/benchmark_${stamp}.svg
,其中stamp
是最近一次 commit 提交时间 - 测试结果已取平均
# FFRT 用户编程指南
Function Flow 编程模型是一种基于任务和数据驱动的并发编程模型,允许开发者通过任务及其依赖关系描述的方式进行应用开发。FFRT(Function Flow 运行时)是支持 Function Flow 编程模型的软件运行时库,用于调度执行开发者基于 Function Flow 编程模型开发的应用。通过 Function Flow 编程模型和 FFRT,开发者可专注于应用功能开发,由 FFRT 在运行时根据任务依赖状态和可用执行资源自动并发调度和执行任务。
本文用于指导开发者基于 Function Flow 编程模型和 FFRT 实现并行编程。
版本
版本 | 编辑 | 主要变更 | 日期 |
---|---|---|---|
V0.1 | linjiashu zhangguowei huangyouzhong | 发布以下 API: 1. task 管理,包括:submit,wait,task_attr, task_handle/submit_h 2. 同步原语,包括:mutex,shared_mutex, condition_variable 3. Deadline 调度 4. 杂项:sleep,yield | 2022/09/26 |
V0.1.1 | shengxia | 部分描述更新 | 2023/08/24 |
V0.1.2 | wanghuachen | 新增串行队列相关接口以及说明,增加规范以避免 double free 问题 | 2023/10/07 |
V0.1.3 | shengxia | 优化串行队列内容描述 | 2024/01/12 |
缩写
缩略语 | 英文全名 | 中文解释 |
---|---|---|
FFRT | Function Flow Run Time | 软件实现 Function Flow 运行时用于任务调度和执行 |
Function Flow | Function Flow Programming Model | Function Flow 编程模型 |
Pure Function | Pure Function | 纯函数,注意本文中定义的纯函数指的是通过表达相互间数据依赖即可由调度系统保证正确执行的任务。 |
编程模型
两种编程模型
线程编程模型 | FFRT 任务编程模型 | |
---|---|---|
并行度挖掘方式 | 程序员通过创建多线程并把任务分配到每个线程中执行来挖掘运行时的并行度 | 程序员(编译器工具或语言特性配合)静态编程时将应用分解成任务及其数据依赖关系,运行时调度器分配任务到工作线程执行 |
谁负责线程创建 | 程序员负责创建线程,线程编程模型无法约束线程的创建,滥用可能造成系统中大量线程 | FFRT 运行时负责工作线程池的创建和管理由调度器负责,程序员无法直接创建线程 |
负载均衡 | 程序员静态编程时将任务映射到线程,映射不合理或任务执行时间不确定造成线程负载不均 | FFRT 运行时根据线程执行状态调度就绪任务到空闲线程执行,减轻了线程负载不均问题 |
调度开销 | 线程调度由内核态调度器完成,调度开销大 | FFRT 运行时在用户态以协程方式调度执行,相比内核线程调度机制更为轻量,减小调度的开销,并可通过硬化调度卸载进一步减小调度开销 |
依赖表达 | 线程创建时即处于可执行状态,执行时与其他线程同步操作,增加线程切换 | FFRT 运行时根据任务创建时显式表达的输入依赖和输出依赖关系判断任务可执行状态,当输入依赖不满足时,任务不被调度执行 |
Function Flow 任务编程模型
Function Flow 编程模型允许开发者通过任务及其依赖关系描述的方式进行应用开发,其主要特性包括Task-Based
和 Data-Driven
。
Task-Based 特性
Task-Based
指在 Function Flow 编程模型中开发者以任务方式来组织应用程序表达,运行时以任务粒度执行调度。
任务定义为一种面向开发者的编程线索和面向运行时的执行对象,通常包含一组指令序列及其操作的数据上下文环境。
Function Flow 编程模型中的任务包含以下主要特征:
- 任务之间可指定依赖关系,依赖关系通过
Data-Driven
方式表达。 - 任务可支持嵌套,即任务在执行过程中可生成新的任务下发给运行时,形成父子任务关系。
- 多任务支持互同步操作,例如等待,锁,条件变量等。
注意
任务颗粒度影响应用执行性能,颗粒度过小增加调度开销,颗粒度过大降低并行度。Function Flow 编程模型中任务的目标颗粒度最小为
100us
量级,开发者应注意合理控制任务颗粒度。
Data-Driven 特性
Data-Driven
指任务之间的依赖关系通过数据依赖表达。
任务执行过程中对其关联的数据对象进行读写操作。在 Function Flow 编程模型中,数据对象表达抽象为数据签名,每个数据签名唯一对应一个数据对象。
数据依赖抽象为任务所操作的数据对象的数据签名列表,包括输入数据依赖in_deps
和输出数据依赖out_deps
。数据对象的签名出现在一个任务的in_deps
中时,该任务称为数据对象的消费者任务,消费者任务执行不改变其输入数据对象的内容;数据对象的签名出现在任务的out_deps
中时,该任务称为数据对象的生产者任务,生产者任务执行改变其输出数据对象的内容,从而生成该数据对象的一个新的版本。
一个数据对象可能存在多个版本,每个版本对应一个生产者任务和零个,一个或多个消费者任务,根据生产者任务和消费者任务的下发顺序定义数据对象的多个版本的顺序以及每个版本所对应的生产者和消费者任务。
数据依赖解除的任务进入就绪状态允许被调度执行,依赖解除状态指任务所有输入数据对象版本的生产者任务执行完成,且所有输出数据对象版本的所有消费者任务执行完成的状态。
通过上述Data-Driven
的数据依赖表达,FFRT 在运行时可动态构建任务之间的基于生产者/消费者的数据依赖关系并遵循任务数据依赖状态执行调度,包括:
-
Producer-Consumer 依赖
一个数据对象版本的生产者任务和该数据对象版本的消费者任务之间形成的依赖关系,也称为 Read-after-Write 依赖。
-
Consumer-Producer 依赖
一个数据对象版本的消费者任务和该数据对象的下一个版本的生产者任务之间形成的依赖关系,也称为 Write-after-Read 依赖。
-
Producer-Producer 依赖
一个数据对象版本的生产者任务和该数据对象的下一个版本的生产者任务之间形成的依赖关系,也称为 Write-after-Write 依赖。
例如,如果有这么一些任务,与数据 A 的关系表述为:
task1(OUT A);
task2(IN A);
task3(IN A);
task4(OUT A);
task5(OUT A);

为表述方便,本文中的数据流图均以圆圈表示 Task,方块表示数据。
可以得出以下结论:
- task1 与 task2/task3 构成 Producer-Consumer 依赖,即:task2/task3 需要等到 task1 写完 A 之后才能读 A
- task2/task3 与 task4 构成 Consumer-Producer 依赖,即:task4 需要等到 task2/task3 读完 A 之后才能写 A
- task4 与 task5 构成 Producer-Producer 依赖,即:task5 需要等到 task4 写完 A 之后才能写 A
C++ API
C++ API 采用接近 C++11 的命名风格,以
ffrt
命名空间替代std
命名空间
需编译使用-std=c++17
任务管理
submit
- 向调度器提交一个 task
- 该接口是异步的,即该接口不等到 task 完成即可返回,因此,通常与wait 配合使用
- 建议 FFRT 任务上下文使用
ffrt::mutex
替代std::mutex
- API 上,二者仅在命令空间上有差异,可平滑替换 (
ffrt::mutex
可在非 ffrt task 中调用,效果与普通的锁一致) ffrt::mutex
相对std::mutex
开销更小,且不会阻塞 FFRT 的 worker 线程 (提交到 FFRT 的任务中大量使用std::mutex
有 FFRT worker 线程被耗尽而死锁的风险)
- API 上,二者仅在命令空间上有差异,可平滑替换 (
声明
namespace ffrt {
void submit(std::function<void()>&& func, const std::vector<const void*>& in_deps = {}, const std::vector<const void*>& out_deps = {}, const task_attr& attr = {});
void submit(const std::function<void()>& func, const std::vector<const void*>& in_deps = {}, const std::vector<const void*>& out_deps = {}, const task_attr& attr = {});
}
参数
func
- 可被
std::function
接收的一切 CPU 可执行体,可以为 C++ 定义的 Lambda 函数闭包,函数指针,甚至是函数对象象
in_deps
- 该参数是可选的
- 该参数用于描述该任务的输入依赖,FFRT 通过数据的虚拟地址作为数据的 Signature 来建立依赖
out_deps
- 该参数是可选的
- 该参数用于描述该任务的输出依赖
- 注意:该依赖值本质上是一个数值,ffrt 没办法区分该值是合理的还是不合理的,会假定输入的值是合理的进行处理;但不建议采用
NULL
,1
,2
等值来建立依赖关系,建议采用实际的内存地址,因为前者使用不当会建立起不必要的依赖,影响并发
attr
- 该参数是可选的
- 该参数用于描述 Task 的属性,比如 qos 等,详见 task_attr章节
返回值
- 不涉及
描述
-
该接口支持在 FFRT task 内部调用,也支持在 FFRT task 外部调用
-
该接口支持嵌套调用,即任务中可以继续提交子任务
-
该接口采用多种优化策略,包括使用移动语义和初始化列表,用户仅需按照提供的原型调用,编译器会自动选择最优的重载版本。具体支持以下重载版本:
void submit(std::function<void()>&& func); void submit(std::function<void()>&& func, std::initializer_list<const void*> in_deps); void submit(std::function<void()>&& func, std::initializer_list<const void*> in_deps, std::initializer_list<const void*> out_deps); void submit(std::function<void()>&& func, std::initializer_list<const void*> in_deps, std::initializer_list<const void*> out_deps, const task_attr& attr); void submit(std::function<void()>&& func, const std::vector<const void*>& in_deps); void submit(std::function<void()>&& func, const std::vector<const void*>& in_deps, const std::vector<const void*>& out_deps); void submit(std::function<void()>&& func, const std::vector<const void*>& in_deps, const std::vector<const void*>& out_deps, const task_attr& attr); void submit(const std::function<void()>& func); void submit(const std::function<void()>& func, std::initializer_list<const void*> in_deps); void submit(const std::function<void()>& func, std::initializer_list<const void*> in_deps, std::initializer_list<const void*> out_deps); void submit(const std::function<void()>& func, std::initializer_list<const void*> in_deps, std::initializer_list<const void*> out_deps, const task_attr& attr); void submit(const std::function<void()>& func, const std::vector<const void*>& in_deps); void submit(const std::function<void()>& func, const std::vector<const void*>& in_deps, const std::vector<const void*>& out_deps); void submit(const std::function<void()>& func, const std::vector<const void*>& in_deps, const std::vector<const void*>& out_deps, const task_attr& attr);
样例
submit and wait
#include <iostream>
#include "ffrt.h"
int main(int narg, char** argv)
{
int i = 0;
for (i = 0; i < 3; i++) {
ffrt::submit([i] { std::cout << "num: " << i << std::endl; });
}
ffrt::wait();
return 0;
}
解析:
1.该示例中连续下发了 3 个 Task,Task 使用 C++ 11 Lambda 来描述(实际中 Task 还可以使用函数指针,函数对象来描述),这些 Task 都会读取 i
,但是不会写任何变量;
2.ffrt::submit
为异步下发,因此,Task2 并不会等到 Task1 执行完成之后再下发;
3.ffrt::wait
用于实现待所有 Task 都执行完成之后 main 函数再退出;
4.由于 3 个 Task 在数据依赖关系上没有生产者 - 消费者或生产者 - 生产者依赖关系,因此 3 个 Task 是可以并行的,1 种可能的输出是:
num: 0
num: 2
num: 1
注意:
如果将 Lambda 表达式中的值捕获设置成引用捕获(即[&i] { std::cout << "num: " << i << std::endl; }
),可能得到的输出为:
num: 2
num: 2
num: 2
这是因为 FFRT 是异步编程模型,在第一个 task 真正开始执行的时候,i
的值可能已经被修改为 1 或者 2
data version

#include <iostream>
#include "ffrt.h"
int main(int narg, char** argv)
{
int x = 1;
ffrt::submit([&] {x = 100; std::cout << "x:" << x << std::endl;}, {}, {&x});
ffrt::submit([&] {std::cout << "x:" << x << std::endl;}, {&x}, {});
ffrt::submit([&] {std::cout << "x:" << x << std::endl;}, {&x}, {});
ffrt::submit([&] {x++; std::cout << "x:" << x << std::endl;}, {}, {&x});
ffrt::submit([&] {x++; std::cout << "x:" << x << std::endl;}, {}, {&x});
ffrt::wait();
return 0;
}
解析:
- 按上一章节Data-Driven 特性的描述,输出一定为:
x:100
x:100
x:100
x:101
x:102
nested task
#include <iostream>
#include "ffrt.h"
int main(int narg, char** argv)
{
ffrt::submit([&] {
std::cout << "task 1" << std::endl;
ffrt::submit([&] {std::cout << "nested task 1.1" << std::endl;}, {}, {});
ffrt::submit([&] {std::cout << "nested task 1.2" << std::endl;}, {}, {});
ffrt::wait();
}, {}, {});
ffrt::submit([&] {
std::cout << "task 2" << std::endl;
ffrt::submit([&] {std::cout << "nested task 2.1" << std::endl;}, {}, {});
ffrt::submit([&] {std::cout << "nested task 2.2" << std::endl;}, {}, {});
ffrt::wait();
}, {}, {});
ffrt::wait();
return 0;
}
解析:
1.FFRT 允许在 Task 内部继续提交多个 SubTask,这样 Task 之间可以建立起一颗调用树;
2.Task1 和 Task2 可以并行,Task 1.1/1.2/2.1/2.2 之间也可以并行,因此 1 种可行的输出为:
task 1
nested task 1.1
task 2
nested task 1.2
nested task 2.2
nested task 2.1
wait
- 同步等待,与submit 配合使用
- 等待指定的数据被生产完成,或等待当前任务的所有子任务完成,在不满足条件之前,当前的执行上下文被 suspend,在满足条件后恢复执行
声明
namespace ffrt {
void wait(const std::vector<const void*>& deps);
void wait();
}
参数
deps
- 需要等待被生产完成的数据的虚拟地址,这些地址可能作为某些任务在 submit 时的 out_deps
返回值
- 不涉及
描述
wait(deps)
用于等待 deps 指代的数据被生产完成才能执行后面的代码wait()
用于等待当前上下文提交的所有子任务(注意:不包括孙子任务)都完成才能执行后面的代码- 该接口支持在 FFRT task 内部调用,也支持在 FFRT task 外部调用
- 在 FFRT task 外部调用的
wait
是 OS 能够感知的等待,相对于 FFRT task 内部调用的wait
是更加昂贵的,因此我们希望尽可能让更多的wait
发生在 FFRT task 内部,而不是 FFRT task 外部
样例
recursive fibonacci
串行版的 fibonacci 可以实现为:
#include <iostream>
void fib(int x, int& y) {
if (x <= 1) {
y = x;
} else {
int y1, y2;
fib(x - 1, y1);
fib(x - 2, y2);
y = y1 + y2;
}
}
int main(int narg, char** argv)
{
int r;
fib(10, r);
std::cout << "fibonacci 10: " << r << std::endl;
return 0;
}
若要使用 FFRT 实现并行(注,对于单纯的 fibonacci,单个 Task 的计算量极小,不具有并行加速的意义,但这种调用 pattern 对并行编程模型的灵活性考验是非常高的),其中 1 种可行的实现为:
#include <iostream>
#include "ffrt.h"
void fib_ffrt(int x, int& y)
{
if (x <= 1) {
y = x;
} else {
int y1, y2;
ffrt::submit([&] {fib_ffrt(x - 1, y1);}, {&x}, {&y1} );
ffrt::submit([&] {fib_ffrt(x - 2, y2);}, {&x}, {&y2} );
ffrt::wait({&y1, &y2});
y = y1 + y2;
}
}
int main(int narg, char** argv)
{
int r;
ffrt::submit([&] { fib_ffrt(10, r); }, {}, {&r});
ffrt::wait({&r});
std::cout << "fibonacci 10: " << r << std::endl;
return 0;
}
解析:
- 将
fibonacci (x-1)
和fibonacci (x-2)
作为 2 个 Task 提交给 FFRT,在两个 Task 完成之后将结果累加; - 虽然单个 Task 只能拆分成 2 个 SubTask 但是子 Task 可以继续拆分,因此,整个计算图的并行度是非常高的,Task 之间在 FFRT 内部形成了一颗调用树;

task_attr
- 定义 task 的属性的辅助类,与submit 配合使用
声明
namespace ffrt {
enum qos {
qos_inherit = -1,
qos_background,
qos_utility,
qos_default,
qos_user_initiated,
};
class task_attr {
public:
task_attr& qos(enum qos qos); // set qos
enum qos qos() const; // get qos
task_attr& name(const char* name); // set name
const char* name() const; // get name
};
}
参数
qos
- qos 设定的枚举类型
- inherent 是一个 qos 设定策略,代表即将 submit 的 task 的 qos 继承当前 task 的 qos
返回值
- 不涉及
描述
-
约定
- 在 submit 时,如果不通过 task_attr 设定 qos,那么默认该提交的 task 的 qos 为
qos_default
- 在 submit 时,如果通过 task_attr 设定 qos 为
qos_inherent
,表示将该提交的 task 的 qos 与当前 task 的 qos 相同,在 FFRT task 外部提交的属性为qos_inherent
的 task,其 qos 为qos_default
- 其他情况下,该提交的 task 的 qos 被设定为指定的值
- 在 submit 时,如果不通过 task_attr 设定 qos,那么默认该提交的 task 的 qos 为
-
qos 级别从上到下依次递增,
qos_user_interactive
拥有最高优先级
样例
#include <iostream>
#include "ffrt.h"
int main(int narg, char** argv)
{
ffrt::submit([] { std::cout << "hello ffrt" << std::endl; }, {}, {},
ffrt::task_attr().qos(ffrt::qos_background));
ffrt::wait();
return 0;
}
- 提交一个 qos 级别为
qos_background
的任务
submit_h
- 向调度器提交一个 task,与submit 的差别在于返回 task 的句柄,该句柄可以用于建立 task 之间的依赖,或用于在 wait 语句中实现同步
声明
namespace ffrt {
class task_handle {
public:
task_handle();
task_handle(ffrt_task_handle_t p);
task_handle(task_handle const&) = delete;
void operator=(task_handle const&) = delete;
task_handle(task_handle&& h);
task_handle& operator=(task_handle&& h);
operator void* () const;
};
task_handle submit_h(std::function<void()>&& func, const std::vector<const void*>& in_deps = {}, const std::vector<const void*>& out_deps = {}, const task_attr& attr = {});
task_handle submit_h(const std::function<void()>& func, const std::vector<const void*>& in_deps = {}, const std::vector<const void*>& out_deps = {}, const task_attr& attr = {});
}
参数
func
- 同 submit,详见submit 定义
in_deps
- 同 submit,详见submit 定义
out_deps
- 同 submit,详见submit 定义
attr
- 同 submit,详见submit 定义
返回值
- task 的句柄,该句柄可以用于建立 task 之间的依赖,或用于在 wait 语句中实现同步
描述
- 该接口与 submit 使用基本相同,从性能的角度,在不需要返回 task handle 的场景,可以调用 submit 接口 相对于 submit_h 有更好的性能
- task_handle 可以和其他的数据 depends 同时作为某个 task 的 in_deps,表示该 task 的执行依赖 task_handle 对应的 task 执行完成
- task_handle 可以和其他的数据 depends 同时作为 wait 的 deps,表示当前任务将被 suspend,直到 task_handle 对应的 task 执行完成后方被恢复
- task_handle 不建议作为某个 task 的 out_deps,其行为是未定义的
样例
#include <iostream>
#include "ffrt.h"
int main(int narg, char** argv)
{
// handle work with submit
ffrt::task_handle h = ffrt::submit_h([] { std::cout << "hello "; }); // not need some data in this task
int x = 1;
ffrt::submit([&] { x++; }, {}, {&x});
ffrt::submit([&] { std::cout << "world, x = " << x << std::endl; }, {&x, h}); // this task depend x and h
// handle work with wait
ffrt::task_handle h2 = ffrt::submit_h([&] { std::cout << "handle wait" << std::endl; x++; });
ffrt::wait({h2});
std::cout << "x = " << x << std::endl;
ffrt::wait();
return 0;
}
- 预期的输出为
hello world, x = 2
handle wait
x = 3
get_id
- 返回当前 task 的 id 标识,更多使用用于维测(原因是 task name 可能重名)
声明
namespace ffrt {
namespace this_task {
uint64_t get_id();
}
}
参数
- 不涉及
返回值
- 当前 task 的 id
描述
- 该接口在 task 内部调用将返回当前 task 的 id 标识,在 task 外部调用将返回 0
- 可以基于该接口在 task 外部调用返回 0 的特性来区分函数是运行在 FFRT 工作线程上还是非 FFRT 工作线程上
- task id 为从 1 开始编码,每提交一个 task 便增加 1,被设计成 64 bit,即便是每秒百万次提交,也需要 292471.2 年才会发生翻转
样例
#include <iostream>
#include "ffrt.h"
int main(int narg, char** argv)
{
ffrt::submit([] { std::cout << "task id: " << ffrt::this_task::get_id() << std::endl; });
ffrt::submit([] { std::cout <<"task id: " << ffrt::this_task::get_id() << std::endl; });
ffrt::wait();
std::cout << "task id: " << ffrt::this_task::get_id() << std::endl;
return 0;
}
- 可能的输出为:
task id: 1
task id: 2
task id: 0
update_qos
- 更新当前正在执行的 task 的优先级
声明
namespace ffrt {
namespace this_task {
int update_qos(enum qos qos);
}
}
参数
qos
- 新的 qos 等级
返回值
- 0 表示成功,非 0 表示失败
描述
- 该接口对当前 task 的 qos 调整会立即生效
- 如果新设定的 qos 与当前的 qos 不一致,则会 block 当前 task 的执行,再按照新的 qos 恢复执行
- 如果新设定的 qos 与当前的 qos 一致,则接口会立即返回,不做任何处理
- 如果在非 task 内部调用该接口,则返回非 0 值,用户可以选择忽略或其他处理
样例
#include <iostream>
#include <thread>
#include "ffrt.h"
int main(int narg, char** argv)
{
ffrt::submit([] {
std::cout << "thread id: " << std::this_thread::get_id() << std::endl;
std::cout << "return " << ffrt::this_task::update_qos(ffrt::qos_user_initiated) << std::endl;
std::cout << "thread id: " << std::this_thread::get_id() << std::endl;
});
ffrt::wait();
std::cout << "return " << ffrt::this_task::update_qos(ffrt::qos_user_initiated) << std::endl;
return 0;
}
- 可能的输出为:
thread id: 1024
return 0
thread id: 2222
return 1
串行队列
串行队列基于 FFRT 协程调度模型,实现了消息队列功能。串行任务执行在 FFRT worker 上,用户无需维护一个专用的线程,拥有更轻量级的调度开销。
支持以下基本功能:
- 支持创建队列,创建队列时可指定队列名称和优先级,每个队列在功能上相当于一个单独的线程,队列中的任务相对于用户线程异步执行。
- 支持延时任务,向队列提交任务时支持设置 delay 属性,单位为微秒 us,提交给队列的延时任务,在提交时刻+delay 时间后才会被调度执行。
- 支持串行调度,同一个队列中的多个任务按照 uptime(提交时刻+delay 时间)升序排列、串行执行,队列中一个任务完成后下一个任务才会开始。
- 支持取消任务,支持根据任务句柄取消单个未执行的任务,如果这个任务已出队(开始执行或已执行完),取消接口返回异常值。
- 支持同步等待,支持根据任务句柄等待指定任务完成,该任务完成,也代表同一队列中 uptime 在此任务之前的所有任务都已完成。
queue
描述
FFRT 串行队列 C++ API,提供提交任务、取消任务、等待任务执行完成等功能
声明
namespace ffrt {
class queue {
public:
queue(queue const&) = delete;
void operator=(queue const&) = delete;
void submit(const std::function<void()>& func);
void submit(const std::function<void()>& func, const task_attr& attr);
void submit(std::function<void()>&& func);
void submit(std::function<void()>&& func, const task_attr& attr);
task_handle submit_h(const std::function<void()>& func);
task_handle submit_h(const std::function<void()>& func, const task_attr& attr);
task_handle submit_h(std::function<void()>&& func);
task_handle submit_h(std::function<void()>&& func, const task_attr& attr);
int cancel(const task_handle& handle);
void wait(const task_handle& handle);
};
}
方法
submit
namespace ffrt {
void queue::submit(const std::function<void()>& func);
void queue::submit(const std::function<void()>& func, const task_attr& attr);
void queue::submit(std::function<void()>&& func);
void queue::submit(std::function<void()>&& func, const task_attr& attr);
}
- 描述:提交一个任务到队列中调度执行
- 参数:
func
:可被std::function
接收的一切 CPU 可执行体,可以为 C++ 定义的 Lambda 函数闭包,函数指针,甚至是函数对象
attr
:该参数是可选的,用于描述 task 的属性,如qos
、delay
、timeout
等,详见task_attr章节 - 返回值:不涉及
submit_h
namespace ffrt {
task_handle queue::submit_h(const std::function<void()>& func);
task_handle queue::submit_h(const std::function<void()>& func, const task_attr& attr);
task_handle queue::submit_h(std::function<void()>&& func);
task_handle queue::submit_h(std::function<void()>&& func, const task_attr& attr);
}
- 描述:提交一个任务到队列中调度执行,并返回一个句柄
- 参数:
func
:可被std::function
接收的一切 CPU 可执行体,可以为 C++ 定义的 Lambda 函数闭包,函数指针,甚至是函数对象
attr
:该参数时可选的,用于描述 task 的属性,如qos
、delay
、timeout
等,详见task_attr章节 - 返回值:
task_handle
:task 的句柄,该句柄可以用于建立 task 之间的依赖
cancel
namespace ffrt {
int queue::cancel(const task_handle& handle);
}
- 描述:根据句柄取消对应的任务
- 参数:
handle
:任务的句柄 - 返回值:
若成功返回 0,失败时返回非零值
wait
namespace ffrt {
void queue::wait(const task_handle& handle);
}
-
描述:等待句柄对应的任务执行完成
-
参数:
handle
:任务的句柄 -
返回值:不涉及
样例
#include "ffrt.h"
int main(int narg, char** argv)
{
// 创建队列,可设置队列优先级,默认为 default 等级
ffrt::queue q("test_queue", ffrt::queue_attr().qos(ffrt::qos_utility));
int x = 0;
// 提交串行任务
q.submit([&x] { x += 10; });
// 提交串行任务,并返回任务句柄
ffrt::task_handle t1 = q.submit_h([&x] { x += 10; });
// 提交串行任务,设置延时时间 1000us,并返回任务句柄
ffrt::task_handle t2 = q.submit_h([&x] { x += 10; }, ffrt::task_attr().delay(1000));
// 等待指定任务执行完成
q.wait(t1);
// 取消句柄为 t2 的任务
q.cancel(t2);
}
使用约束
- 队列销毁时,会等待正在执行的任务执行完成,队列中还没有开始执行的任务会被取消。
- 任务粒度,串行队列支持任务执行超时检测(默认阈值 30s,进程可配),因此队列中的单个任务不应该常驻(如循环任务),超过 30s 会向 DFX 上报超时。
- 同步原语,任务中如果使用了
std::mutex
/std::shared_mutex
/std::condition_variable
等 std 同步原语,会影响协程效率,需修改 FFRT 同步原语。
当前 FFRT 仅支持ffrt::mutex
/ffrt::shared_mutex
/ffrt::recursive_mutex
/ffrt::condition_variable
,用法和 std 相同,在 FFRT 的任务中使用未支持同步原语可能导致未定义的行为。 - 生命周期,进程结束前需要释放 FFRT 资源。
例如 SA 业务,会在全局变量中管理串行队列。由于进程会先卸载libffrt.so
再释放全局变量,如果进程结束时,SA 未显示释放持有的串行队列,队列将随全局变量析构,析构时会访问已释放的 FFRT 资源,导致 Fuzz 用例出现use-after-free
问题。 - 不允许在串行任务中调用
ffrt::submit
和ffrt::wait
,其行为是未定义的 - 不允许使用
ffrt::wait
等待一个串行任务
queue_attr
描述
FFRT 串行队列 C++ API,提供设置与获取串行队列优先级、设置与获取串行队列任务执行超时时间、设置与获取串行队列超时回调函数等功能
声明
namespace ffrt {
class queue_attr {
public:
queue_attr(const queue_attr&) = delete;
queue_attr& operator=(const queue_attr&) = delete;
queue_attr& qos(qos qos_);
uint64_t timeout() const;
queue_attr& callback(const std::function<void()>& func);
ffrt_function_header_t* callback() const;
};
}
方法
set qos
namespace ffrt {
queue_attr& queue_attr::qos(qos qos_);
}
-
描述:设置队列属性的 qos 成员
-
参数:
qos_
:串行队列的优先级 -
返回值:
queue_attr
:串行队列的属性
get qos
namespace ffrt {
int queue_attr::qos() const;
}
-
描述:获取队列的优先级
-
参数:不涉及
-
返回值:
qos
:串行队列的优先级
set timeout
namespace ffrt {
queue_attr& queue_attr::timeout(uint64_t timeout_us);
}
-
描述:设置串行队列任务执行超时时间
-
参数:
timeout_us
:串行队列任务执行超时时间,单位为 us -
返回值:
queue_attr
:串行队列的属性
get timeout
namespace ffrt {
uint64_t queue_attr::timeout() const;
}
-
描述:获取所设的串行队列任务执行超时时间
-
参数:不涉及
-
返回值:
timeout
:串行队列任务执行超时时间,单位为 us
set timeout callback
namespace ffrt {
queue_attr& callback(std::function<void()>& func);
}
-
描述:设置串行队列超时回调函数
-
参数:
func
:可被 std::function 接收的一切 CPU 可执行体,可以为 C++ 定义的 Lambda 函数闭包,函数指针,甚至是函数对象 -
返回值:
queue_attr
:串行队列的属性
get timeout callback
namespace ffrt {
ffrt_function_header_t* callback() const;
}
-
描述:获取所设的串行队列超时回调函数
-
参数:不涉及
-
返回值:
ffrt_function_header_t
:任务执行器,描述了该 CPU Task 如何执行和销毁的函数指针
样例
#include <stdio.h>
#include "ffrt.h"
int main(int narg, char** argv)
{
int x = 0;
std::function<void()> callbackFunc = [&x]() {
x++;
};
// 创建队列,可设置队列优先级,默认为 default 等级
ffrt::queue q1("test_queue", queue_attr().qos(qos_utility));
// 创建队列,可通过设置 timeout 打开队列任务超时监测,默认不设置(关闭)
// 超时会打印 Error 日志并执行用户设置的 callback(可选)
ffrt::queue q2("test_queue", ffrt::queue_attr().timeout(1000).callback(callbackFunc));
return 0;
}
同步原语
mutex
- FFRT 提供的类似
std::mutex
的性能实现
声明
namespace ffrt {
class mutex {
public:
mutex(mutex const &) = delete;
void operator =(mutex const &) = delete;
void lock();
void unlock();
bool try_lock();
};
}
参数
- 不涉及
返回值
- 不涉及
描述
- 该功能能够避免传统的
std::mutex
在抢不到锁时陷入内核的问题,在使用得当的条件下将会有更好的性能
样例
#include <iostream>
#include "ffrt.h"
void ffrt_mutex_task()
{
int sum = 0;
ffrt::mutex mtx;
for (int i = 0; i < 10; i++) {
ffrt::submit([&sum, i, &mtx] {
mtx.lock();
sum = sum + i;
mtx.unlock();
}, {}, {});
}
ffrt::wait();
std::cout << "sum = " << sum << std::endl;
}
int main(int narg, char** argv)
{
int r;
ffrt::submit(ffrt_mutex_task);
ffrt::wait();
return 0;
}
预期输出为
sum=45
- 该例子为功能示例,实际中并不鼓励这样使用
shared_mutex
- FFRT 提供的类似
std::shared_mutex
的性能实现
声明
namespace ffrt {
class shared_mutex {
public:
shared_mutex(shared_mutex const &) = delete;
void operator =(shared_mutex const &) = delete;
void lock();
void unlock();
bool try_lock();
void lock_shared();
void unlock_shared();
bool try_lock_shared();
};
}
参数
- 不涉及
返回值
- 不涉及
描述
- 该功能能够避免传统的
std::shared_mutex
在抢不到锁时陷入内核的问题,在使用得当的条件下将会有更好的性能
样例
#include <iostream>
#include "ffrt_inner.h"
void ffrt_shared_mutex_task()
{
int sum = 0;
ffrt::shared_mutex mtx;
for (int i = 0; i < 10; i++) {
ffrt::submit([&sum, i, &mtx] {
mtx.lock();
sum = sum + i;
mtx.unlock();
}, {}, {});
for (int j = 0; j < 5; j++) {
ffrt::submit([&sum, j, &mtx] {
mtx.lock_shared();
std::cout << "sum = " << sum << std::endl;
mtx.unlock_shared();
}, {}, {});
}
}
ffrt::wait();
std::cout << "sum = " << sum << std::endl;
}
int main(int narg, char** argv)
{
int r;
ffrt::submit(ffrt_shared_mutex_task);
ffrt::wait();
return 0;
}
预期输出为
sum=45
- 该例子为功能示例,实际中并不鼓励这样使用
condition_variable
- FFRT 提供的类似
std::condition_variable
的性能实现
声明
namespace ffrt {
enum class cv_status {
no_timeout,
timeout
};
class condition_variable {
public:
using TimePoint = std::chrono::steady_clock::time_point;
template<typename Clock, typename Duration, typename Pred>
bool wait_until(std::unique_lock<mutex>& lk,
const std::chrono::time_point<Clock, Duration>& tp,
Pred&& pred) noexcept;
template<typename Clock, typename Duration>
cv_status wait_until(std::unique_lock<mutex>& lk,
const std::chrono::time_point<Clock, Duration>& tp) noexcept;
template<typename Rep, typename Period>
cv_status wait_for(std::unique_lock<mutex>& lk,
const std::chrono::duration<Rep, Period>& sleep_time) noexcept;
template<typename Rep, typename Period, typename Pred>
bool wait_for(std::unique_lock<mutex>& lk,
const std::chrono::duration<Rep, Period>& sleepTime,
Pred&& pred) noexcept;
void wait(std::unique_lock<mutex>& lk);
template<typename Pred>
void wait(std::unique_lock<mutex>& lk, Pred&& pred);
void notify_one() noexcept;
void notify_all() noexcept;
};
}
参数
lk
- mutex 互斥量
tp
- 等待时间
sleep_time
- 等待时间
pred
- 检查是否等待函数
返回值
- 不涉及
描述
-
该接口只能在 FFRT task 内部调用,在 FFRT task 外部调用存在未定义的行为
-
该功能能够避免传统的
std::condition_variable
在条件不满足时陷入内核的问题,在使用得当的条件下将会有更好的性能
样例
#include <iostream>
#include "ffrt.h"
void ffrt_cv_task()
{
ffrt::condition_variable cond;
int a = 0;
ffrt::mutex lock_;
ffrt::submit([&] {
std::unique_lock lck(lock_);
cond.wait(lck, [&] { return a == 1; });
std::cout << "a = " << a << std::endl;
}, {}, {});
ffrt::submit([&] {
std::unique_lock lck(lock_);
a = 1;
cond.notify_one();
}, {}, {});
ffrt::wait();
}
int main(int narg, char** argv)
{
int r;
ffrt::submit(ffrt_cv_task);
ffrt::wait();
return 0;
}
预期输出为:
a=1
- 该例子为功能示例,实际中并不鼓励这样使用
杂项
sleep
- FFRT 提供的类似
std::this_thread::sleep_for
/std::this_thread::sleep_until
的性能实现
声明
namespace ffrt {
namespace this_task {
template<class _Rep, class _Period>
void sleep_for(const std::chrono::duration<_Rep, _Period>& sleep_duration);
template<class _Clock, class _Duration>
void sleep_until(const std::chrono::time_point<_Clock, _Duration>& sleep_time);
}
}
参数
sleep_duration
- 睡眠的时长
sleep_time
- 睡眠到达的时间点
返回值
- 不涉及
描述
-
该接口只能在 FFRT task 内部调用,在 FFRT task 外部调用存在未定义的行为
-
该功能能够避免传统的
std::this_thread::sleep_for
睡眠时陷入内核的问题,在使用得当的条件下将会有更好的性能 -
该接口调用后实际睡眠时长不小于配置值
样例
#include <chrono>
#include <iostream>
#include "ffrt.h"
using namespace std::chrono_literals;
int main(int narg, char** argv)
{
ffrt::submit([] {
std::cout << "Hello waiter\n" << std::flush;
auto start = std::chrono::high_resolution_clock::now();
ffrt::this_task::sleep_for(2000ms);
auto end = std::chrono::high_resolution_clock::now();
std::chrono::duration<double, std::milli> elapsed = end-start;
std::cout << "Waited " << elapsed.count() << " ms\n";
});
ffrt::wait();
return 0;
}
- 预期输出为
Hello waiter
Waited 2000.12 ms
yield
- 当前 task 主动让出 CPU 执行资源,让其他可以被执行的 task 先执行,如果没有其他可被执行的 task,yield 无效
声明
namespace ffrt {
namespace this_task {
void yield();
}
}
参数
- 不涉及
返回值
- 不涉及
描述
-
该接口只能在 FFRT task 内部调用,在 FFRT task 外部调用存在未定义的行为
-
此函数的确切行为取决于实现,特别是使用中的 FFRT 调度程序的机制和系统状态
样例
#include <chrono>
#include "ffrt.h"
using namespace std::chrono_literals;
// "busy sleep" while suggesting that other tasks run
// for a small amount of time
void little_sleep(std::chrono::microseconds us)
{
auto start = std::chrono::high_resolution_clock::now();
auto end = start + us;
do {
ffrt::this_task::yield();
} while (std::chrono::high_resolution_clock::now() < end);
}
int main(int narg, char** argv)
{
ffrt::submit([] { little_sleep(200us); });
ffrt::wait();
return 0;
}
- 这是一个非阻塞等待,允许其他可执行的 task 抢占执行
C API
C API 采用接近 C11/pthread (https://zh.cppreference.com/w/c) 的命名风格,并冠以
ffrt_
前缀,以_base
为后缀的 API 是内部 API,通常不被用户直接调用出于易用性方面的考虑,除非必要,强烈建议你使用 C++ API (亦满足二进制兼容要求),调用 C API 将会使你的代码非常臃肿
任务管理
ffrt_submit_base
- 该接口为 FFRT 动态库的导出接口,基于此可以封装出不同的 C++ API
ffrt::submit
和 C APIffrt_submit
,满足二进制兼容
声明
const int ffrt_auto_managed_function_storage_size = 64 + sizeof(ffrt_function_header_t);
typedef enum {
ffrt_function_kind_general,
ffrt_function_kind_queue
} ffrt_function_kind_t;
void* ffrt_alloc_auto_managed_function_storage_base(ffrt_function_kind_t kind);
typedef void(*ffrt_function_t)(void*);
typedef struct {
ffrt_function_t exec;
ffrt_function_t destroy;
uint64_t reserve[2];
} ffrt_function_header_t;
void ffrt_submit_base(ffrt_function_header_t* func, const ffrt_deps_t* in_deps, const ffrt_deps_t* out_deps, const ffrt_task_attr_t* attr);
参数
kind
- function 子类型,用于优化内部数据结构,默认使用
ffrt_function_kind_general
类型
func
- CPU Function 的指针,该指针执行的数据结构,按照
ffrt_function_header_t
定义的描述了该 CPU Task 如何执行和销毁的函数指针,FFRT 通过这两个函数指针完成 Task 的执行和销毁
in_deps
- 该参数是可选的
- 该参数用于描述该任务的输入依赖,FFRT 通过数据的虚拟地址作为数据的 Signature 来建立依赖
out_deps
- 该参数是可选的
- 该参数用于描述该任务的输出依赖
- 注意:该依赖值本质上是一个数值,FFRT 没办法区分该值是合理的还是不合理的,会假定输入的值是合理的进行处理;但不建议采用
NULL
,1
,2
等值来建立依赖关系,建议采用实际的内存地址,因为前者使用不当会建立起不必要的依赖,影响并发
attr
- 该参数用于描述 Task 的属性,比如 qos 等,详见 ffrt_task_attr_t章节
返回值
- 不涉及
描述
ffrt_submit_base
不建议用户直接调用,推荐使用基于此封装的 C++ 接口(亦满足二进制兼容)ffrt_submit_base
作为底层能力,只有在用户需要自定义 task 类型时使用,使用时需要满足以下限制:ffrt_submit_base
入参中的 func 指针只能通过ffrt_alloc_auto_managed_function_storage_base
申请,且二者的调用需一一对应ffrt_alloc_auto_managed_function_storage_base
申请的内存为ffrt_auto_managed_function_storage_size
字节,其生命周期归 FFRT 管理,在该 task 结束时,由 FFRT 自动释放,用户无需释放
ffrt_function_header_t
中定义了两个函数指针:exec
:用于描述该 Task 如何被执行,当 FFRT 需要执行该 Task 时由 FFRT 调用destroy
:用于描述该 Task 如何被执行,当 FFRT 需要执行该 Task 时由 FFRT 调用
样例
- 通过该接口提供 C++11 Lambda 表达式的支持(该代码已经在 ffrt.h 中提供,默认支持)
template<class T>
struct function {
template<class CT>
function(ffrt_function_header_t h, CT&& c) : header(h), closure(std::forward<CT>(c)) {}
ffrt_function_header_t header;
T closure;
};
template<class T>
void exec_function_wrapper(void* t)
{
auto f = (function<std::decay_t<T>>*)t;
f->closure();
}
template<class T>
void destroy_function_wrapper(void* t)
{
auto f = (function<std::decay_t<T>>*)t;
f->closure = nullptr;
}
template<class T>
inline ffrt_function_header_t* create_function_wrapper(T&& func)
{
using function_type = function<std::decay_t<T>>;
static_assert(sizeof(function_type) <= ffrt_auto_managed_function_storage_size,
"size of function must be less than ffrt_auto_managed_function_storage_size");
auto p = ffrt_alloc_auto_managed_function_storage_base(ffrt_function_kind_general);
auto f = new (p) function_type(
{exec_function_wrapper<T>, destroy_function_wrapper<T>},
std::forward<T>(func));
return (ffrt_function_header_t*)f;
}
static inline void submit(std::function<void()>&& func)
{
return ffrt_submit_base(create_function_wrapper(std::move(func)), NULL, NULL, NULL);
}
ffrt_wait
- 同步等待,与 ffrt_submit 配合使用
- 等待指定的数据被生产完成,或等待当前任务的所有子任务完成,在不满足条件之前,当前的执行上下文被 suspend,在满足条件后恢复执行
声明
void ffrt_wait_deps(ffrt_deps_t* deps);
void ffrt_wait();
参数
deps
- 需要等待被生产完成的数据的虚拟地址,这些地址可能作为某些任务在 submit 时的 out_deps,该依赖的生成见 ffrt_deps_t 章节,空指针表示无依赖
返回值
- 不涉及
描述
-
ffrt_wait_deps(deps)
用于等待由 deps 指定的数据准备就绪后,方可执行后续代码。 -
ffrt_wait()
用于等待当前上下文提交的所有子任务都完成才能执行后面的代码(注意:不包括孙任务和下级子任务) -
该接口支持在 FFRT task 内部调用,也支持在 FFRT task 外部调用
-
在 FFRT task 外部调用的 wait 是 OS 能够感知的等待,相对于 FFRT task 内部调用的 wait 是更加昂贵的,因此我们希望尽可能让更多的 wait 发生在 FFRT task 内部,而不是 FFRT task 外部
样例
recursive fibonacci
串行版的 fibonacci 可以实现为:
#include <stdio.h>
void fib(int x, int* y) {
if (x <= 1) {
*y = x;
} else {
int y1, y2;
fib(x - 1, &y1);
fib(x - 2, &y2);
*y = y1 + y2;
}
}
int main(int narg, char** argv)
{
int r;
fib(10, &r);
printf("fibonacci 10: %d\n", r);
return 0;
}
若要使用 FFRT 实现并行(注,对于单纯的 fibonacci,单个 Task 的计算量极小,不具有并行加速的意义,但这种调用 pattern 对并行编程模型的灵活性考验是非常高的),其中 1 种可行的实现为:
#include <stdio.h>
#include "ffrt.h"
typedef struct {
int x;
int* y;
} fib_ffrt_s;
typedef struct {
ffrt_function_header_t header;
ffrt_function_t func;
ffrt_function_t after_func;
void* arg;
} c_function;
static void ffrt_exec_function_wrapper(void* t)
{
c_function* f = (c_function*)t;
if (f->func) {
f->func(f->arg);
}
}
static void ffrt_destroy_function_wrapper(void* t)
{
c_function* f = (c_function*)t;
if (f->after_func) {
f->after_func(f->arg);
}
}
#define FFRT_STATIC_ASSERT(cond, msg) int x(int static_assertion_##msg[(cond) ? 1 : -1])
static inline ffrt_function_header_t* ffrt_create_function_wrapper(const ffrt_function_t func,
const ffrt_function_t after_func, void* arg)
{
FFRT_STATIC_ASSERT(sizeof(c_function) <= ffrt_auto_managed_function_storage_size,
size_of_function_must_be_less_than_ffrt_auto_managed_function_storage_size);
c_function* f = (c_function*)ffrt_alloc_auto_managed_function_storage_base(ffrt_function_kind_general);
f->header.exec = ffrt_exec_function_wrapper;
f->header.destroy = ffrt_destroy_function_wrapper;
f->func = func;
f->after_func = after_func;
f->arg = arg;
return (ffrt_function_header_t*)f;
}
static inline void ffrt_submit_c(ffrt_function_t func, const ffrt_function_t after_func,
void* arg, const ffrt_deps_t* in_deps, const ffrt_deps_t* out_deps, const ffrt_task_attr_t* attr)
{
ffrt_submit_base(ffrt_create_function_wrapper(func, after_func, arg), in_deps, out_deps, attr);
}
void fib_ffrt(void* arg)
{
fib_ffrt_s* p = (fib_ffrt_s*)arg;
int x = p->x;
int* y = p->y;
if (x <= 1) {
*y = x;
} else {
int y1, y2;
fib_ffrt_s s1 = {x - 1, &y1};
fib_ffrt_s s2 = {x - 2, &y2};
const std::vector<ffrt_dependence_t> dx_deps = {{ffrt_dependence_data, &x}};
ffrt_deps_t dx{static_cast<uint32_t>(dx_deps.size()), dx_deps.data()};
const std::vector<ffrt_dependence_t> dy1_deps = {{ffrt_dependence_data, &y1}};
ffrt_deps_t dy1{static_cast<uint32_t>(dy1_deps.size()), dy1_deps.data()};
const std::vector<ffrt_dependence_t> dy2_deps = {{ffrt_dependence_data, &y2}};
ffrt_deps_t dy2{static_cast<uint32_t>(dy2_deps.size()), dy2_deps.data()};
const std::vector<ffrt_dependence_t> dy12_deps = {{ffrt_dependence_data, &y1}, {ffrt_dependence_data, &y2}};
ffrt_deps_t dy12{static_cast<uint32_t>(dy12_deps.size()), dy12_deps.data()};
ffrt_submit_c(fib_ffrt, NULL, &s1, &dx, &dy1, NULL);
ffrt_submit_c(fib_ffrt, NULL, &s2, &dx, &dy2, NULL);
ffrt_wait_deps(&dy12);
*y = y1 + y2;
}
}
int main(int narg, char** argv)
{
int r;
fib_ffrt_s s = {10, &r};
const std::vector<ffrt_dependence_t> dr_deps = {{ffrt_dependence_data, &r}};
ffrt_deps_t dr{static_cast<uint32_t>(dr_deps.size()), dr_deps.data()};
ffrt_submit_c(fib_ffrt, NULL, &s, NULL, &dr, NULL);
ffrt_wait_deps(&dr);
printf("fibonacci 10: %d\n", r);
return 0;
}
解析:
-
将
fibonacci (x-1)
和fibonacci (x-2)
作为 2 个 Task 提交给 FFRT,在两个 Task 完成之后将结果累加; -
虽然单个 Task 只能拆分成 2 个 SubTask 但是子 Task 可以继续拆分,因此,整个计算图的并行度是非常高的,Task 之间在 FFRT 内部形成了一颗调用树;

以上实现,逻辑上虽与 C++ API 中的实现类似,但是用户显式管理数据生命周期和函数入参打包两个因素将使代码异常复杂
ffrt_deps_t
- C API 中对依赖数组的抽象,逻辑上等同于 C++ API 中的
std::vector<void*>
声明
typedef struct {
uint32_t len;
const ffrt_dependence_t* items;
} ffrt_deps_t;
参数
len
- 所依赖的 Signature 的个数,取值大于等于 0
item
- len 个 Signature 的起始地址指针
返回值
- 不涉及
描述
- item 为 len 个 Signature 的起始指针,该指针可以指向堆空间,也可以指向栈空间,但是要求分配的空间大于等于
len *sizeof(void*)
样例
- item 指向栈空间的 ffrt_deps_t
#include "ffrt.h"
int main(int narg, char** argv)
{
int x1 = 1;
int x2 = 2;
const std::vector<ffrt_dependence_t> t_deps = {{ffrt_dependence_data, &x1}, {ffrt_dependence_data, &x2}};
ffrt_deps_t deps{static_cast<uint32_t>(t_deps.size()), t_deps.data()};
// some code use deps
return 0;
}
- item 指向栈空间的 ffrt_deps_t
#include <stdlib.h>
#include "ffrt.h"
int main(int narg, char** argv)
{
int x1 = 1;
int x2 = 2;
ffrt_dependence_t* t = new ffrt_dependence_t[2];
t[0]= {ffrt_dependence_data, &x1};
t[1]= {ffrt_dependence_data, &x2};
ffrt_deps_t deps = {2, t};
// some code use deps
return 0;
}
ffrt_task_attr_t
- 定义 task 的属性的辅助类,与 ffrt_submit 配合使用
声明
typedef enum {
ffrt_qos_inherent = -1,
ffrt_qos_background,
ffrt_qos_utility,
ffrt_qos_default,
ffrt_qos_user_initiated,
} ffrt_qos_t;
typedef struct {
char storage[ffrt_task_attr_storage_size];
} ffrt_task_attr_t;
typedef void* ffrt_task_handle_t;
int ffrt_task_attr_init(ffrt_task_attr_t* attr);
void ffrt_task_attr_destroy(ffrt_task_attr_t* attr);
void ffrt_task_attr_set_qos(ffrt_task_attr_t* attr, ffrt_qos_t qos);
ffrt_qos_t ffrt_task_attr_get_qos(const ffrt_task_attr_t* attr);
void ffrt_task_attr_set_name(ffrt_task_attr_t* attr, const char* name);
const char* ffrt_task_attr_get_name(const ffrt_task_attr_t* attr);
参数
attr
- 创建的 tasks 属性的句柄
qos
- qos 设定的枚举类型
- inherent 是一个 qos 设定策略,代表即将 ffrt_submit 的 task 的 qos 继承当前 task 的 qos
返回值
- 不涉及
描述
-
attr
所传递的内容会在 ffrt_submit 内部完成取存,ffrt_submit 返回后用户即可销毁 -
约定
- 在 submit 时,如果不通过 task_attr 设定 qos,那么默认该提交的 task 的 qos 为
ffrt_qos_default
- 在 submit 时,如果通过 task_attr 设定 qos 为
ffrt_qos_inherent
,表示将该提交的 task 的 qos 与当前 task 的 qos 相同,在 FFRT task 外部提交的属性为ffrt_qos_inherent
的 task,其 qos 为ffrt_qos_default
- 其他情况下,该提交的 task 的 qos 被设定为指定的值
- 在 submit 时,如果不通过 task_attr 设定 qos,那么默认该提交的 task 的 qos 为
-
ffrt_task_attr_t 对象的置空和销毁由用户完成,对同一个 ffrt_task_attr_t 仅能调用一次
ffrt_task_attr_destroy
,重复对同一个 ffrt_task_attr_t 调用ffrt_task_attr_destroy
,其行为是未定义的 -
在
ffrt_task_attr_destroy
之后再对 task_attr 进行访问,其行为是未定义的
样例
#include <stdio.h>
#include "ffrt.h"
void my_print(void* arg)
{
printf("hello ffrt\n");
}
typedef struct {
ffrt_function_header_t header;
ffrt_function_t func;
ffrt_function_t after_func;
void* arg;
} c_function;
static void ffrt_exec_function_wrapper(void* t)
{
c_function* f = (c_function*)t;
if (f->func) {
f->func(f->arg);
}
}
static void ffrt_destroy_function_wrapper(void* t)
{
c_function* f = (c_function*)t;
if (f->after_func) {
f->after_func(f->arg);
}
}
#define FFRT_STATIC_ASSERT(cond, msg) int x(int static_assertion_##msg[(cond) ? 1 : -1])
static inline ffrt_function_header_t* ffrt_create_function_wrapper(const ffrt_function_t func,
const ffrt_function_t after_func, void* arg)
{
FFRT_STATIC_ASSERT(sizeof(c_function) <= ffrt_auto_managed_function_storage_size,
size_of_function_must_be_less_than_ffrt_auto_managed_function_storage_size);
c_function* f = (c_function*)ffrt_alloc_auto_managed_function_storage_base(ffrt_function_kind_general);
f->header.exec = ffrt_exec_function_wrapper;
f->header.destroy = ffrt_destroy_function_wrapper;
f->func = func;
f->after_func = after_func;
f->arg = arg;
return (ffrt_function_header_t*)f;
}
static inline void ffrt_submit_c(ffrt_function_t func, const ffrt_function_t after_func,
void* arg, const ffrt_deps_t* in_deps, const ffrt_deps_t* out_deps, const ffrt_task_attr_t* attr)
{
ffrt_submit_base(ffrt_create_function_wrapper(func, after_func, arg), in_deps, out_deps, attr);
}
int main(int narg, char** argv)
{
ffrt_task_attr_t attr;
ffrt_task_attr_init(&attr);
ffrt_task_attr_set_qos(&attr, ffrt_qos_background);
ffrt_submit_c(my_print, NULL, NULL, NULL, NULL, &attr);
ffrt_task_attr_destroy(&attr);
ffrt_wait();
return 0;
}
- 提交一个 qos 级别为
ffrt_qos_background
的任务
ffrt_submit_h
- 向调度器提交一个 task,与 ffrt_submit 的差别在于返回 task 的句柄,该句柄可以用于建立 task 之间的依赖,或用于在 wait 语句中实现同步
声明
typedef void* ffrt_task_handle_t;
ffrt_task_handle_t ffrt_submit_h(ffrt_function_t func, void* arg, const ffrt_deps_t* in_deps, const ffrt_deps_t* out_deps, const ffrt_task_attr_t* attr);
void ffrt_task_handle_destroy(ffrt_task_handle_t handle);
参数
func
- 同 ffrt_submit_base,详见ffrt_submit_base 定义
in_deps
- 同 ffrt_submit_base,详见ffrt_submit_base 定义
out_deps
- 同 ffrt_submit_base,详见ffrt_submit_base 定义
attr
- 同 ffrt_submit_base,详见ffrt_submit_base 定义
返回值
- task 的句柄,该句柄可以用于建立 task 之间的依赖,或用于在 wait 语句中实现同步
描述
- C API 中的 ffrt_task_handle_t 的使用与 C++ API 中的 ffrt::task_handle 相同
- 差异在于:C API 中的 ffrt_task_handle_t 需要用户调用
ffrt_task_handle_destroy
显式销毁,而 C++ API 无需该操作 - C API 中的 task_handle_t 对象的置空和销毁由用户完成,对同一个 ffrt_task_handle_t 仅能调用一次
ffrt_task_handle_destroy
,重复对同一个 ffrt_task_handle_t 调用ffrt_task_handle_destroy
,其行为是未定义的 - 在
ffrt_task_handle_destroy
之后再对 ffrt_task_handle_t 进行访问,其行为是未定义的
样例
#include <stdio.h>
#include "ffrt.h"
void func0(void* arg)
{
printf("hello ");
}
void func1(void* arg)
{
(*(int*)arg)++;
}
void func2(void* arg)
{
printf("world, x = %d\n", *(int*)arg);
}
void func3(void* arg)
{
printf("handle wait");
(*(int*)arg)++;
}
typedef struct {
ffrt_function_header_t header;
ffrt_function_t func;
ffrt_function_t after_func;
void* arg;
} c_function;
static void ffrt_exec_function_wrapper(void* t)
{
c_function* f = (c_function*)t;
if (f->func) {
f->func(f->arg);
}
}
static void ffrt_destroy_function_wrapper(void* t)
{
c_function* f = (c_function*)t;
if (f->after_func) {
f->after_func(f->arg);
}
}
#define FFRT_STATIC_ASSERT(cond, msg) int x(int static_assertion_##msg[(cond) ? 1 : -1])
static inline ffrt_function_header_t* ffrt_create_function_wrapper(const ffrt_function_t func,
const ffrt_function_t after_func, void* arg)
{
FFRT_STATIC_ASSERT(sizeof(c_function) <= ffrt_auto_managed_function_storage_size,
size_of_function_must_be_less_than_ffrt_auto_managed_function_storage_size);
c_function* f = (c_function*)ffrt_alloc_auto_managed_function_storage_base(ffrt_function_kind_general);
f->header.exec = ffrt_exec_function_wrapper;
f->header.destroy = ffrt_destroy_function_wrapper;
f->func = func;
f->after_func = after_func;
f->arg = arg;
return (ffrt_function_header_t*)f;
}
static inline ffrt_task_handle_t ffrt_submit_h_c(ffrt_function_t func, const ffrt_function_t after_func,
void* arg, const ffrt_deps_t* in_deps, const ffrt_deps_t* out_deps, const ffrt_task_attr_t* attr)
{
return ffrt_submit_h_base(ffrt_create_function_wrapper(func, after_func, arg), in_deps, out_deps, attr);
}
static inline void ffrt_submit_c(ffrt_function_t func, const ffrt_function_t after_func,
void* arg, const ffrt_deps_t* in_deps, const ffrt_deps_t* out_deps, const ffrt_task_attr_t* attr)
{
ffrt_submit_base(ffrt_create_function_wrapper(func, after_func, arg), in_deps, out_deps, attr);
}
int main(int narg, char** argv)
{
// handle work with submit
ffrt_task_handle_t h = ffrt_submit_h_c(func0, NULL, NULL, NULL, NULL, NULL); // not need some data in this task
int x = 1;
const std::vector<ffrt_dependence_t> d1_deps = {{ffrt_dependence_data, &x}};
ffrt_deps_t d1{static_cast<uint32_t>(d1_deps.size()), d1_deps.data()};
const std::vector<ffrt_dependence_t> d2_deps = {{ffrt_dependence_data, &x}, {ffrt_dependence_data, h}};
ffrt_deps_t d2{static_cast<uint32_t>(d2_deps.size()), d2_deps.data()};
ffrt_submit_c(func1, NULL, &x, NULL, &d1, NULL);
ffrt_submit_c(func2, NULL, &x, &d2, NULL, NULL); // this task depend x and h
ffrt_task_handle_destroy(h);
// handle work with wait
ffrt_task_handle_t h2 = ffrt_submit_h_c(func3, NULL, &x, NULL, NULL, NULL);
const std::vector<ffrt_dependence_t> d3_deps = {{ffrt_dependence_data, h2}};
ffrt_deps_t d3{static_cast<uint32_t>(d3_deps.size()), d3_deps.data()};
ffrt_wait_deps(&d3);
ffrt_task_handle_destroy(h2);
printf("x = %d", x);
ffrt_wait();
return 0;
}
- 预期的输出为
hello world, x = 2
handle wait
x = 3
ffrt_this_task_get_id
- 返回当前 task 的 id 标识,更多使用用于维测(原因是 task name 可能重名)
声明
uint64_t ffrt_this_task_get_id();
参数
- 不涉及
返回值
- 当前 task 的 id
描述
- 该接口在 task 内部调用将返回当前 task 的 id 标识,在 task 外部调用将返回 0
- 可以基于该接口在 task 外部调用返回 0 的特性来区分函数是运行在 FFRT 工作线程上还是非 FFRT 工作线程上
- task id 为从 1 开始编码,每提交一个 task 便增加 1,被设计成 64bit,即便是每秒百万次提交,也需要 292471.2 年才会发生翻转
样例
- 忽略
ffrt_this_task_update_qos
- 更新当前正在执行的 task 的优先级
声明
int ffrt_this_task_update_qos(ffrt_qos_t qos);
参数
qos
新的优先级
返回值
- 0 表示成功,非 0 表示失败
描述
- 该接口对当前 task 的 qos 调整会立即生效
- 如果新设定的 qos 与当前的 qos 不一致,则会 block 当前 task 的执行,再按照新的 qos 恢复执行
- 如果新设定的 qos 与当前的 qos 一致,则接口会立即返回 0,不做任何处理
- 如果在非 task 内部调用该接口,则返回非零值,调用者可以选择忽略或进行其他处理
样例
- 忽略
串行队列
基本功能与使用约束见 C++ API 中的串行队列部分
ffrt_queue_t
描述
FFRT 串行队列 C API,提供提交任务、取消任务、等待任务执行完成等功能
声明
typedef enum { ffrt_queue_serial, ffrt_queue_max } ffrt_queue_type_t;
typedef void* ffrt_queue_t;
ffrt_queue_t ffrt_queue_create(ffrt_queue_type_t type, const char* name, const ffrt_queue_attr_t* attr);
void ffrt_queue_destroy(ffrt_queue_t queue);
void ffrt_queue_submit(ffrt_queue_t queue, ffrt_function_header_t* f, const ffrt_task_attr_t* attr);
ffrt_task_handle_t ffrt_queue_submit_h(
ffrt_queue_t queue, ffrt_function_header_t* f, const ffrt_task_attr_t* attr);
void ffrt_queue_wait(ffrt_task_handle_t handle);
int ffrt_queue_cancel(ffrt_task_handle_t handle);
方法
ffrt_queue_create
ffrt_queue_t ffrt_queue_create(ffrt_queue_type_t type, const char* name, const ffrt_queue_attr_t* attr);
-
描述:创建串行队列
-
参数:
type
:用于描述创建的队列类型,串行队列对应type
为ffrt_queue_serial
name
:用于描述创建的队列名称attr
:所创建的 queue 属性,若未设定则会使用默认值 -
返回值:如果成功创建了队列,则返回一个非空的队列句柄;否则返回空指针
ffrt_queue_destroy
void ffrt_queue_destroy(ffrt_queue_t queue);
-
描述:销毁串行队列
-
参数:
queue
:想要销毁的队列的句柄 -
返回值:不涉及
ffrt_queue_submit
void ffrt_queue_submit(ffrt_queue_t queue, ffrt_function_header_t* f, const ffrt_task_attr_t* attr);
-
描述:提交一个任务到队列中调度执行
-
参数:
queue
:串行队列的句柄f
:任务执行指针attr
:所创建的 queue 属性 -
返回值:不涉及
ffrt_queue_submit_h
ffrt_task_handle_t ffrt_queue_submit_h(
ffrt_queue_t queue, ffrt_function_header_t* f, const ffrt_task_attr_t* attr);
-
描述:提交一个任务到队列中调度执行,并返回任务句柄
-
参数:
queue
:串行队列的句柄f
:任务执行指针attr
:所创建的 queue 属性 -
返回值:如果任务被提交,则返回一个非空的任务句柄;否则返回空指针
ffrt_queue_wait
void ffrt_queue_wait(ffrt_task_handle_t handle);
-
描述:等待串行队列中一个任务执行完成
-
参数:
handle
:任务的句柄 -
返回值:不涉及
ffrt_queue_cancel
int ffrt_queue_cancel(ffrt_task_handle_t handle);
-
描述:取消队列中一个任务。必须使用 submit_h 后拿到的 task_handle,否则会报异常;任务开始执行后则无法取消,仅能成功取消未开始执行的任务
-
参数:
handle
:任务的句柄 -
返回值:若成功返回 0,失败时返回非零值
样例
#include <stdio.h>
#include "ffrt.h"
using namespace ffrt;
using namespace std;
int main(int narg, char** argv)
{
ffrt_queue_attr_t queue_attr;
// 1、初始化队列属性,必需
(void)ffrt_queue_attr_init(&queue_attr);
// 2、创建串行队列,并返回队列句柄 queue_handle
ffrt_queue_t queue_handle = ffrt_queue_create(ffrt_queue_serial, "test_queue", &queue_attr);
int result = 0;
std::function<void()>&& basicFunc = [&result]() { result += 1; };
// 3、提交串行任务
ffrt_queue_submit(queue_handle, create_function_wrapper(basicFunc, ffrt_function_kind_queue), nullptr);
// 4、提交串行任务,并返回任务句柄
ffrt_task_handle_t t1 = ffrt_queue_submit_h(queue_handle, create_function_wrapper(basicFunc, ffrt_function_kind_queue), nullptr);
// 5、等待指定任务执行完成
ffrt_queue_wait(t1);
ffrt_task_handle_t t2 = ffrt_queue_submit_h(queue_handle, create_function_wrapper(basicFunc, ffrt_function_kind_queue), nullptr);
// 6、取消句柄为 t2 的任务
int ret = ffrt_queue_cancel(t2);
// 7、销毁提交给串行队列任务的句柄 t1 和 t2,必需
ffrt_task_handle_destroy(t1);
ffrt_task_handle_destroy(t2);
// 8、销毁队列属性,必需
ffrt_queue_attr_destroy(&queue_attr);
// 9、销毁队列句柄,必需
ffrt_queue_destroy(queue_handle);
}
ffrt_queue_attr_t
描述
FFRT 串行队列 C API,提供设置与获取串行队列优先级、设置与获取串行队列任务执行超时时间、设置与获取串行队列超时回调函数等功能
声明
typedef struct {
uint32_t storage[(ffrt_queue_attr_storage_size + sizeof(uint32_t) - 1) / sizeof(uint32_t)];
} ffrt_queue_attr_t;
int ffrt_queue_attr_init(ffrt_queue_attr_t* attr);
void ffrt_queue_attr_destroy(ffrt_queue_attr_t* attr);
void ffrt_queue_attr_set_qos(ffrt_queue_attr_t* attr, ffrt_qos_t qos);
ffrt_qos_t ffrt_queue_attr_get_qos(const ffrt_queue_attr_t* attr);
void ffrt_queue_attr_set_timeout(ffrt_queue_attr_t* attr, uint64_t timeout_us);
uint64_t ffrt_queue_attr_get_timeout(const ffrt_queue_attr_t* attr);
void ffrt_queue_attr_set_callback(ffrt_queue_attr_t* attr, ffrt_function_header_t* f);
ffrt_function_header_t* ffrt_queue_attr_get_callback(const ffrt_queue_attr_t* attr);
方法
ffrt_queue_attr_init
int ffrt_queue_attr_init(ffrt_queue_attr_t* attr);
-
描述:初始化串行队列的属性
-
参数:
attr
:已初始化的串行队列属性 -
返回值:若成功返回 0,失败返回 -1
ffrt_queue_attr_destroy
void ffrt_queue_attr_destroy(ffrt_queue_attr_t* attr);
-
描述:销毁串行队列的属性
ffrt_queue_attr_t 对象的置空和销毁由用户完成,对同一个 ffrt_queue_t 仅能调用一次
ffrt_queue_attr_destroy
,重复对同一个 ffrt_queue_t 调用ffrt_queue_attr_destroy
,其行为是未定义的在
ffrt_queue_attr_destroy
之后再对 ffrt_queue_t 进行访问,其行为是未定义的 -
参数:
attr
:所创建的串行队列属性 -
返回值:不涉及
ffrt_queue_attr_set_qos
void ffrt_queue_attr_set_qos(ffrt_queue_attr_t* attr, ffrt_qos_t qos);
-
描述:设置串行队列 qos 属性,默认为 default 等级
-
参数:
attr
:所创建的串行队列属性qos
:串行队列优先级 -
返回值:不涉及
ffrt_queue_attr_get_qos
ffrt_qos_t ffrt_queue_attr_get_qos(const ffrt_queue_attr_t* attr);
-
描述:获取串行队列 qos 属性
-
参数:
attr
:所创建的串行队列属性 -
返回值:所设置的串行队列的 qos 等级,默认为 default 等级
ffrt_queue_attr_set_timeout
void ffrt_queue_attr_set_timeout(ffrt_queue_attr_t* attr, uint64_t timeout_us);
-
描述:设置串行队列任务执行超时时间
-
参数:
attr
:所创建的串行队列属性timeout_us
:串行队列任务执行超时时间,单位为 us -
返回值:不涉及
ffrt_queue_attr_get_timeout
uint64_t ffrt_queue_attr_get_timeout(const ffrt_queue_attr_t* attr);
-
描述:获取所设置的串行队列任务执行超时时间
-
参数:
attr
:所创建的串行队列属性 -
返回值:串行队列任务执行超时时间,单位为 us
ffrt_queue_attr_set_callback
void ffrt_queue_attr_set_callback(ffrt_queue_attr_t* attr, ffrt_function_header_t* f);
-
描述:设置串行队列超时回调函数
-
参数:
attr
:所创建的串行队列属性f
:串行队列超时回调函数 -
返回值:不涉及
ffrt_queue_attr_get_callback
ffrt_function_header_t* ffrt_queue_attr_get_callback(const ffrt_queue_attr_t* attr);
-
描述:获取串行队列超时回调函数
-
参数:
attr
:所创建的串行队列属性 -
返回值:串行队列任务超时回调函数
样例
#include <stdio.h>
#include "ffrt.h"
using namespace ffrt;
using namespace std;
int main(int narg, char** argv)
{
ffrt_queue_attr_t queue_attr;
// 1、初始化串行队列属性,必需
int result = ffrt_queue_attr_init(&queue_attr);
int x = 0;
std::function<void()>&& basicFunc = [&x]() { x += 1; };
// 2、可设置队列优先级,默认为 default 等级
ffrt_queue_attr_set_qos(&queue_attr, static_cast<int>(ffrt_qos_utility));
int qos = ffrt_queue_attr_get_qos(&queue_attr);
// 3、可通过设置 timeout 打开队列任务超时监测,默认不设置(关闭)
ffrt_queue_attr_set_timeout(&queue_attr, 10000);
uint64_t time = ffrt_queue_attr_get_timeout(&queue_attr);
// 4、超时会打印 Error 日志并执行用户设置的 callback(可选)
ffrt_queue_attr_set_callback(&queue_attr, ffrt::create_function_wrapper(basicFunc, ffrt_function_kind_queue));
ffrt_function_header_t* func = ffrt_queue_attr_get_callback(&queue_attr);
// 5、销毁串行队列属性,必需
ffrt_queue_attr_destroy(&queue_attr);
}
ffrt_loop_t
- 为满足美团生态对接的要求,扩展了 FFRT 基本功能。新增了支持定时器、线程间通信、N 并发队列、并提供 Loop 机制(在用户创建的线程内循环执行用户提交的任务)等功能
声明
typedef void* ffrt_loop_t
ffrt_loop_t ffrt_loop_create(ffrt_queue_t queue);
int ffrt_loop_destroy(ffrt_loop_t loop);
int ffrt_loop_run(ffrt_loop_t loop);
void ffrt_loop_stop(ffrt_loop_t loop);
int ffrt_loop_epoll_ctl(ffrt_loop_t loop, int op, int fd, uint32_t events, void *data, ffrt_poller_cb cb);
ffrt_timer_t ffrt_loop_timer_start(
ffrt_loop_t loop, uint64_t timeout, void* data, ffrt_timer_cb cb, bool repeat);
int ffrt_loop_timer_stop(ffrt_loop_t loop, ffrt_timer_t handle);
参数
queue
: 表示一个队列句柄
loop
: 表示一个 loop 句柄
op
: 表示目标文件描述符的操作
fd
: 表示执行操作的目标文件描述符
events
: 表示跟目标文件描述符相关联的事件类型
data
: 表示回调函数中被用户使用的数据
cb
: 表示一个回调函数,当目标文件描述符被获取时执行
timeout
: 表示函数调用中阻塞时间的上限,单位为毫秒
repeat
: 表示是否重复这个定时器
返回值
-
ffrt_loop_create
接口:当 loop 成功创建后返回一个非空的 loop 句柄,否则返回一个空指针 -
ffrt_loop_destroy
接口:当 loop 成功被销毁返回 0,否则返回 -1 -
ffrt_loop_run
接口:当 loop 成功运行返回 0,否则返回 -1 -
ffrt_loop_epoll_ctl
接口:如果成功在 loop 里添加/删除 fd,返回 0,否则返回 -1 -
ffrt_loop_timer_start
接口:在 loop 里开启一个定时器,返回该定时器的句柄 -
ffrt_loop_timer_stop
接口:在 loop 里停止一个目标定时器,停止成功:返回 0,如果停止失败:返回 -1
描述
-
FFRT 提供 loop 的编程机制,loop 支持任务提交,提交的任务直接在用户线程中执行
-
FFRT loop 基于 FFRT queue 构建任务队列,基于 FFRT Poller 实现事件监听,loop 内部自动遍历任务队列执行任务,当没有任务时进入 Poller 的 epoll_wait 监听事件,线程进入休眠状态
-
支持用户通过接口创建 loop,返回给用户 loop 句柄,创建 loop 时需要传入一个已创建的 FFRT queue 作为该 loop 的任务队列
-
loop 创建后支持向 queue 中提交任务,并支持在 loop run 的过程中向 queue 中提交任务
-
提供
ffrt_loop_create
接口创建 loop,用户传入 queue,创建时将 loop 和 queue 相互绑定 -
注意:这里对传入的 queue 要求从未提交过任务,即:不支持 queue 的任务既在 worker 上执行又在用户线程上执行
-
注意:传入的 queue 类型仅支持 N 并发队列,不支持其它类型的队列
-
提供
ffrt_loop_run
接口,运行 loop,loop 启动后遍历 queue 中的任务执行 -
提供
ffrt_loop_stop
接口,停止运行 loop,停止后 loop 不能再运行 -
提供
ffrt_loop_destroy
接口,将 loop 销毁,同时解除 queue 和 loop 间的绑定关系,意味着 loop 销毁后不能再向该 queue 提交任务 -
提供
ffrt_loop_epoll_ctl
接口,使用户可以监听/删除一个 fd,当 fd 被调用时,执行用户的回调函数 -
提供
ffrt_loop_timer_start
接口,在 loop 中开始一个定时器 -
提供
ffrt_loop_timer_stop
接口,在 loop 中停止一个目标定时器
样例
#include <stdio.h>
#include "ffrt.h"
using namespace ffrt;
using namespace std;
int main(int narg, char** argv)
{
// step1: 创建 queue
ffrt_queue_attr_t queue_attr;
(void)ffrt_queue_attr_init(&queue_attr);
ffrt_queue_t queue_handle = ffrt_queue_create(ffrt_queue_concurrent, "test_queue", &queue_attr);
// step2: 创建 loop
auto loop = ffrt_loop_create(queue_handle);
// step3: 此时可以向 loop 提交任务
int result1 = 0;
std::function<void()>&& basicFunc1 = [&result1]() { result1 += 10; };
ffrt_task_handle_t task1 = ffrt_queue_submit_h(queue_handle,
create_function_wrapper(basicFunc1, ffrt_function_kind_queue), nullptr);
// step4: 在进程中执行 loop run
pthread_t thread;
pthread_create(&thread, 0, ThreadFunc, loop);
static int x = 0;
int* xf = &x;
void* data = xf;
uint64_t timeout1 = 20;
uint64_t timeout2 = 10;
uint64_t expected = 0xabacadae;
int testFd = eventfd(0, EFD_NONBLOCK | EFD_CLOEXEC);
struct TestData testData {.fd = testFd, .expected = expected};
EXPECT_EQ(0, ffrt_loop_timer_start(loop, timeout1, data, cb, false));
EXPECT_EQ(1, ffrt_loop_timer_start(loop, timeout2, data, cb, false));
ffrt_loop_epoll_ctl(loop, EPOLL_CTL_ADD, testFd, EPOLLIN, (void*)(&testData), testCallBack);
ssize_t n = write(testFd, &expected, sizeof(uint64_t));
EXPECT_EQ(n, sizeof(uint64_t));
usleep(25000);
ffrt_loop_epoll_ctl(loop, EPOLL_CTL_DEL, testFd, 0, nullptr, nullptr);
EXPECT_EQ(2, x);
// step5: 继续向 loop 上提交任务
int result2 = 0;
std::function<void()>&& basicFunc2 = [&result2]() { result2 += 20; };
ffrt_task_handle_t task2 = ffrt_queue_submit_h(queue_handle,
create_function_wrapper(basicFunc2, ffrt_function_kind_queue), nullptr);
ffrt_queue_wait(task1);
ffrt_queue_wait(task2);
EXPECT_EQ(result1, 10);
EXPECT_EQ(result2, 20);
// step6: 停止 loop
ffrt_loop_stop(loop);
pthread_join(thread, nullptr);
// step7: loop 销毁
ffrt_loop_destroy(loop);
// step8: 队列销毁
ffrt_queue_attr_destroy(&queue_attr);
ffrt_queue_destroy(queue_handle);
}
ffrt_timer_t
- FFRT timer 基于 epoll 实现定时功能,epoll 是一种 I/O 事件监听、通知机制。在定期执行 PollOnce 时会根据所设的 timeout 时间执行其中的 epoll_wait 阻塞等待注册的事件发生。epoll_wait 的参数 timeout 是函数调用中阻塞时间的上限,单位是 ms,若
timeout > 0
,则在期间有检测到对象变为 ready 状态或者捕获到信号然后返回,否则直到超时。timeout = -1
则会一直在阻塞。
声明
ffrt_timer_t ffrt_timer_start(ffrt_qos_t qos, uint64_t timeout, void* data, ffrt_timer_cb cb, bool repeat);
int ffrt_timer_stop(ffrt_qos_t qos, ffrt_timer_t handle);
参数
qos
- 表示运行定时器 work 的优先级
timeout
- 表示函数调用中阻塞时长的上限,单位为毫秒
data
- 表示回调函数中使用的用户数据
cb
- 表示在超时之后被执行的用户回调函数
repeat
- 表示是否重复这个定时器
handle
- 表示目标定时器的句柄
返回值
ffrt_timer_start
接口:返回一个定时器句柄ffrt_timer_stop
接口:成功停止一个目标定时器,返回 0;否则返回 -1
描述
- 提供接口
ffrt_timer_start
设定超时时间,用于设定 epoll_wait 阻塞时间,若调用 PollOnce 时已超时,则执行入参所设的回调函数 cb - 提供接口
ffrt_timer_stop
用于根据任务 handle 取消定时任务 - 当 timer 超时回调被执行时,FFRT 会记录并保存 handle 的执行状态(执行中、执行完成),该记录会在
ffrt_timer_stop
被调用后删除。因此建议ffrt_timer_start
和ffrt_timer_stop
接口成对使用,否则可能造成记录数据的无限膨胀
样例
#include <stdio.h>
#include "ffrt.h"
using namespace ffrt
using namespace std
struct TestData {
int fd;
uint64_t expected;
};
int main(int narg, char** argv)
{
static int x = 0;
int* xf = &x;
void* data = xf;
uint64_t timeout = 20;
uint64_t expected = 0xabacadae;
int testFd = eventfd(0, EFD_NONBLOCK | EFD_CLOEXEC);
struct TestData testData {.fd = testFd, .expected = expected};
ffrt::submit([=]() {
ffrt_qos_t taskQos = ffrt_this_task_get_qos();
int handle = ffrt_timer_start(taskQos, timeout, data, cb, false);
ffrt_epoll_ctl(taskQos, EPOLL_CTL_ADD, testFd, EPOLLIN, (void*)(&testData), testCallBack);
ffrt_usleep(19000);
ffrt_timer_stop(taskQos, handle);
ssize_t n = write(testFd, &expected, sizeof(uint64_t));
stall_us(200);
ffrt_epoll_ctl(taskQos, EPOLL_CTL_DEL, testFd, 0, nullptr, nullptr);
}, {}, {});
ffrt::wait();
}
同步原语
ffrt_mutex_t
- FFRT 提供的类似 pthread mutex 的性能实现
声明
typedef enum {
ffrt_error = -1,
ffrt_success = 0,
ffrt_error_nomem = ENOMEM,
ffrt_error_timedout = ETIMEDOUT,
ffrt_error_busy = EBUSY,
ffrt_error_inval = EINVAL
} ffrt_error_t;
struct ffrt_mutex_t;
struct ffrt_mutexattr_t;
typedef enum {
ffrt_mutex_normal = 0,
ffrt_mutex_recursive = 2,
ffrt_mutex_default = ffrt_mutex_normal
} ffrt_mutex_type;
int ffrt_mutexattr_init(ffrt_mutexattr_t* attr);
int ffrt_mutexattr_settype(ffrt_mutexattr_t* attr, int type);
int ffrt_mutexattr_gettype(ffrt_mutexattr_t* attr, int* type);
int ffrt_mutexattr_destroy(ffrt_mutexattr_t* attr);
int ffrt_mutex_init(ffrt_mutex_t* mutex, const ffrt_mutexattr_t* attr);
int ffrt_mutex_lock(ffrt_mutex_t* mutex);
int ffrt_mutex_unlock(ffrt_mutex_t* mutex);
int ffrt_mutex_trylock(ffrt_mutex_t* mutex);
int ffrt_mutex_destroy(ffrt_mutex_t* mutex);
参数
type
- FFRT 锁类型,当前仅支持互斥锁
ffrt_mutex_normal
和递归锁ffrt_mutex_recursive
attr
- FFRT 锁属性,attr 如果为空指针代表互斥锁 mutex
mutex
- 指向所操作的锁指针
返回值
- 若成功则为
ffrt_success
,否则发生错误
描述
-
该接口支持在 FFRT task 内部调用,也支持在 FFRT task 外部调用
-
该功能能够避免 pthread 传统的
pthread_mutex_t
在抢不到锁时陷入内核的问题,在使用得当的条件下将会有更好的性能 -
注意:目前暂不支持定时功能
-
注意:C API 中的
ffrt_mutexattr_t
需要用户调用ffrt_mutexattr_init
和ffrt_mutexattr_destroy
显示创建和销毁,而 C++ API 无需该操作 -
注意:C API 中的
ffrt_mutex_t
需要用户调用ffrt_mutex_init
和ffrt_mutex_destroy
显式创建和销毁,而 C++ API 无需该操作 -
注意:C API 中的
ffrt_mutex_t
对象的置空和销毁由用户完成,对同一个ffrt_mutex_t
仅能调用一次ffrt_mutex_destroy
,重复对同一个 ffrt_mutex_t 调用ffrt_mutex_destroy
,其行为是未定义的 -
注意:C API 中的同一个
ffrt_mutexattr_t
只能调用一次ffrt_mutexattr_init
和ffrt_mutexattr_destroy
,重复调用其行为是未定义的 -
注意:用户需要在调用
ffrt_mutex_init
之后和调用ffrt_mutex_destroy
之前显示调用ffrt_mutexattr_destroy
-
注意:在
ffrt_mutex_destroy
之后再对ffrt_mutex_t
进行访问,其行为是未定义的
样例
#include <stdio.h>
#include "ffrt.h"
typedef struct {
int* sum;
ffrt_mutex_t* mtx;
} tuple;
void func(void* arg)
{
tuple* t = (tuple*)arg;
int ret = ffrt_mutex_lock(t->mtx);
if (ret != ffrt_success) {
printf("error\n");
}
(*t->sum)++;
ret = ffrt_mutex_unlock(t->mtx);
if (ret != ffrt_success) {
printf("error\n");
}
}
typedef struct {
ffrt_function_header_t header;
ffrt_function_t func;
ffrt_function_t after_func;
void* arg;
} c_function;
static void ffrt_exec_function_wrapper(void* t)
{
c_function* f = (c_function*)t;
if (f->func) {
f->func(f->arg);
}
}
static void ffrt_destroy_function_wrapper(void* t)
{
c_function* f = (c_function*)t;
if (f->after_func) {
f->after_func(f->arg);
}
}
#define FFRT_STATIC_ASSERT(cond, msg) int x(int static_assertion_##msg[(cond) ? 1 : -1])
static inline ffrt_function_header_t* ffrt_create_function_wrapper(const ffrt_function_t func,
const ffrt_function_t after_func, void* arg)
{
FFRT_STATIC_ASSERT(sizeof(c_function) <= ffrt_auto_managed_function_storage_size,
size_of_function_must_be_less_than_ffrt_auto_managed_function_storage_size);
c_function* f = (c_function*)ffrt_alloc_auto_managed_function_storage_base(ffrt_function_kind_general);
f->header.exec = ffrt_exec_function_wrapper;
f->header.destroy = ffrt_destroy_function_wrapper;
f->func = func;
f->after_func = after_func;
f->arg = arg;
return (ffrt_function_header_t*)f;
}
static inline void ffrt_submit_c(ffrt_function_t func, const ffrt_function_t after_func,
void* arg, const ffrt_deps_t* in_deps, const ffrt_deps_t* out_deps, const ffrt_task_attr_t* attr)
{
ffrt_submit_base(ffrt_create_function_wrapper(func, after_func, arg), in_deps, out_deps, attr);
}
void ffrt_mutex_task(void *)
{
int sum = 0;
ffrt_mutex_t mtx;
tuple t = {&sum, &mtx};
int ret = ffrt_mutex_init(&mtx, NULL);
if (ret != ffrt_success) {
printf("error\n");
}
for (int i = 0; i < 10; i++) {
ffrt_submit_c(func, NULL, &t, NULL, NULL, NULL);
}
ffrt_mutex_destroy(&mtx);
ffrt_wait();
printf("sum = %d", sum);
}
void ffrt_recursive_mutex_task(void *)
{
int sum = 0;
int ret = 0;
ffrt_mutexattr_t attr;
ffrt_mutex_t mtx;
tuple t = {&sum, &mtx};
ret = ffrt_recursive_mutex_init(&mtx, &attr);
if (ret != ffrt_success) {
printf("error\n");
}
for (int i = 0; i < 10; i++) {
ffrt_submit_c(func, NULL, &t, NULL, NULL, NULL);
}
ffrt_recursive_mutex_destroy(&mtx);
ffrt_wait();
printf("sum = %d", sum);
}
int main(int narg, char** argv)
{
int r;
/* mutex */
ffrt_submit_c(ffrt_mutex_task, NULL, NULL, NULL, NULL, NULL);
ffrt_wait();
/* recursive mutex */
ffrt_submit_c(ffrt_recursive_mutex_task, NULL, NULL, NULL, NULL, NULL);
ffrt_wait();
return 0;
}
预期输出为
sum=10
- 该例子为功能示例,实际中并不鼓励这样使用
ffrt_rwlock_t
- FFRT 提供的类似 pthread rwlock 的性能实现
声明
typedef enum {
ffrt_error = -1,
ffrt_success = 0,
ffrt_error_nomem = ENOMEM,
ffrt_error_timedout = ETIMEDOUT,
ffrt_error_busy = EBUSY,
ffrt_error_inval = EINVAL
} ffrt_error_t;
struct ffrt_rwlock_t;
int ffrt_rwlock_init(ffrt_rwlock_t* rwlock, const ffrt_rwlockattr_t* attr);
int ffrt_rwlock_wrlock(ffrt_rwlock_t* rwlock);
int ffrt_rwlock_trywrlock(ffrt_rwlock_t* rwlock);
int ffrt_rwlock_rdlock(ffrt_rwlock_t* rwlock);
int ffrt_rwlock_tryrdlock(ffrt_rwlock_t* rwlock);
int ffrt_rwlock_unlock(ffrt_rwlock_t* rwlock);
int ffrt_rwlock_destroy(ffrt_rwlock_t* rwlock);
参数
attr
- 当前 FFRT 只支持基础类型的 rwlock,因此 attr 必须为空指针
rwlock
- 指向所操作的读写锁的指针
返回值
- 若成功则为
ffrt_success
,否则发生错误
描述
-
该接口只能在 FFRT task 内部调用,在 FFRT task 外部调用存在未定义的行为
-
该功能能够避免 pthread 传统的
pthread_rwlock_t
在抢不到锁时陷入内核的问题,在使用得当的条件下将会有更好的性能 -
注意:目前暂不支持递归和定时功能
-
注意:C API 中的
ffrt_rwlock_t
需要用户调用ffrt_rwlock_init
和ffrt_rwlock_destroy
显式创建和销毁,而 C++ API 无需该操作 -
注意:C API 中的
ffrt_rwlock_t
对象的置空和销毁由用户完成,对同一个ffrt_rwlock_t
仅能调用一次ffrt_rwlock_destroy
,重复对同一个ffrt_rwlock_t
调用ffrt_rwlock_destroy
,其行为是未定义的 -
注意:在
ffrt_rwlock_destroy
之后再对ffrt_rwlock_t
进行访问,其行为是未定义的
样例
#include <stdio.h>
#include "ffrt_inner.h"
typedef struct {
int* sum;
ffrt_rwlock_t* mtx;
} tuple;
void func1(void* arg)
{
tuple* t = (tuple*)arg;
int ret = ffrt_rwlock_wrlock(t->mtx);
if (ret != ffrt_success) {
printf("error\n");
}
(*t->sum)++;
ret = ffrt_rwlock_unlock(t->mtx);
if (ret != ffrt_success) {
printf("error\n");
}
}
void func2(void* arg)
{
tuple* t = (tuple*)arg;
int ret = ffrt_rwlock_rdlock(t->mtx);
if (ret != ffrt_success) {
printf("error\n");
}
printf("sum is %d\n", *t->sum);
ret = ffrt_rwlock_unlock(t->mtx);
if (ret != ffrt_success) {
printf("error\n");
}
}
typedef struct {
ffrt_function_header_t header;
ffrt_function_t func;
ffrt_function_t after_func;
void* arg;
} c_function;
static void ffrt_exec_function_wrapper(void* t)
{
c_function* f = (c_function*)t;
if (f->func) {
f->func(f->arg);
}
}
static void ffrt_destroy_function_wrapper(void* t)
{
c_function* f = (c_function*)t;
if (f->after_func) {
f->after_func(f->arg);
}
}
#define FFRT_STATIC_ASSERT(cond, msg) int x(int static_assertion_##msg[(cond) ? 1 : -1])
static inline ffrt_function_header_t* ffrt_create_function_wrapper(const ffrt_function_t func,
const ffrt_function_t after_func, void* arg)
{
FFRT_STATIC_ASSERT(sizeof(c_function) <= ffrt_auto_managed_function_storage_size,
size_of_function_must_be_less_than_ffrt_auto_managed_function_storage_size);
c_function* f = (c_function*)ffrt_alloc_auto_managed_function_storage_base(ffrt_function_kind_general);
f->header.exec = ffrt_exec_function_wrapper;
f->header.destroy = ffrt_destroy_function_wrapper;
f->func = func;
f->after_func = after_func;
f->arg = arg;
return (ffrt_function_header_t*)f;
}
static inline void ffrt_submit_c(ffrt_function_t func, const ffrt_function_t after_func,
void* arg, const ffrt_deps_t* in_deps, const ffrt_deps_t* out_deps, const ffrt_task_attr_t* attr)
{
ffrt_submit_base(ffrt_create_function_wrapper(func, after_func, arg), in_deps, out_deps, attr);
}
void ffrt_rwlock_task(void* arg)
{
int sum = 0;
ffrt_rwlock_t mtx;
tuple t = {&sum, &mtx};
int ret = ffrt_rwlock_init(&mtx, NULL);
if (ret != ffrt_success) {
printf("error\n");
}
for (int i = 0; i < 10; i++) {
ffrt_submit_c(func1, NULL, &t, NULL, NULL, NULL);
for (int j = 0; j < 5; j++) {
ffrt_submit_c(func2, NULL, &t, NULL, NULL, NULL);
}
}
ffrt_rwlock_destroy(&mtx);
ffrt_wait();
printf("sum = %d", sum);
}
int main(int narg, char** argv)
{
int r;
ffrt_submit_c(ffrt_rwlock_task, NULL, NULL, NULL, NULL, NULL);
ffrt_wait();
return 0;
}
预期输出为
sum is 1
sum is 2
sum is 3
sum is 4
sum is 5
sum is 6
sum is 7
sum is 8
sum is 9
sum is 10
每种各5次
- 该例子为功能示例,实际中并不鼓励这样使用
ffrt_cond_t
- FFRT 提供的类似 pthread 信号量的性能实现
声明
typedef enum {
ffrt_error = -1,
ffrt_success = 0,
ffrt_error_nomem = ENOMEM,
ffrt_error_timedout = ETIMEDOUT,
ffrt_error_busy = EBUSY,
ffrt_error_inval = EINVAL
} ffrt_error_t;
typedef struct {
uint32_t storage[(ffrt_cond_storage_size + sizeof(uint32_t) - 1) / sizeof(uint32_t)];
} ffrt_cond_t;
int ffrt_cond_init(ffrt_cond_t* cond, const ffrt_condattr_t* attr);
int ffrt_cond_signal(ffrt_cond_t* cond);
int ffrt_cond_broadcast(ffrt_cond_t* cond);
int ffrt_cond_wait(ffrt_cond_t*cond, ffrt_mutex_t* mutex);
int ffrt_cond_timedwait(ffrt_cond_t* cond, ffrt_mutex_t* mutex, const struct timespec* time_point);
int ffrt_cond_destroy(ffrt_cond_t* cond);
参数
cond
- 指向所操作的信号量的指针
attr
- 属性设定,空指针表示使用默认属性
mutex
- 指向要在阻塞期间解锁的互斥锁的指针
time_point
- 指向指定等待时限时间的对象的指针, 时钟类型目前只支持CLOCK_MONOTONIC超时时间为绝对值;例如想通过这个函数设置超时为2500ms, 可以参考如下例子使用clock_gettime实现:
struct timespec start_tm;
struct timespec end_tm;
int timeout_ms = 2500;
clock_gettime(CLOCK_MONOTONIC, &start_tm);
end_tm = ns_to_tm(tm_to_ns(start_tm) + timeout_ms*1000000);
ffrt_mutex_lock(&mtx);
while (等待的条件) {
if (ffrt_cond_timedwait(&cond, &mtx, &end_tm) == ETIMEDOUT) {
/*
* 如果超时则退出等待
*/
ret = -1;
break;
}
}
返回值
- 若成功则为
ffrt_success
,若在锁定互斥前抵达时限则为ffrt_error_timedout
描述
-
该接口支持在 FFRT task 内部调用,也支持在 FFRT task 外部调用
-
该功能能够避免传统的
pthread_cond_t
在条件不满足时陷入内核的问题,在使用得当的条件下将会有更好的性能 -
注意:C API 中的
ffrt_cond_t
需要用户调用ffrt_cond_init
和ffrt_cond_destroy
显式创建和销毁,而 C++ API 中依赖构造和析构自动完成 -
注意:C API 中的
ffrt_cond_t
对象的置空和销毁由用户完成,对同一个ffrt_cond_t
仅能调用一次ffrt_cond_destroy
,重复对同一个ffrt_cond_t
调用ffrt_cond_destroy
,其行为是未定义的 -
注意:在
ffrt_cond_destroy
之后再对ffrt_cond_t
进行访问,其行为是未定义的
样例
#include <stdio.h>
#include "ffrt.h"
typedef struct {
ffrt_cond_t* cond;
int* a;
ffrt_mutex_t* lock_;
} tuple;
void func1(void* arg)
{
tuple* t = (tuple*)arg;
int ret = ffrt_mutex_lock(t->lock_);
if (ret != ffrt_success) {
printf("error\n");
}
while (*t->a != 1) {
ret = ffrt_cond_wait(t->cond, t->lock_);
if (ret != ffrt_success) {
printf("error\n");
}
}
ret = ffrt_mutex_unlock(t->lock_);
if (ret != ffrt_success) {
printf("error\n");
}
printf("a = %d", *(t->a));
}
void func2(void* arg)
{
tuple* t = (tuple*)arg;
int ret = ffrt_mutex_lock(t->lock_);
if (ret != ffrt_success) {
printf("error\n");
}
*(t->a) = 1;
ret = ffrt_cond_signal(t->cond);
if (ret != ffrt_success) {
printf("error\n");
}
ret = ffrt_mutex_unlock(t->lock_);
if (ret != ffrt_success) {
printf("error\n");
}
}
typedef struct {
ffrt_function_header_t header;
ffrt_function_t func;
ffrt_function_t after_func;
void* arg;
} c_function;
static void ffrt_exec_function_wrapper(void* t)
{
c_function* f = (c_function*)t;
if (f->func) {
f->func(f->arg);
}
}
static void ffrt_destroy_function_wrapper(void* t)
{
c_function* f = (c_function*)t;
if (f->after_func) {
f->after_func(f->arg);
}
}
#define FFRT_STATIC_ASSERT(cond, msg) int x(int static_assertion_##msg[(cond) ? 1 : -1])
static inline ffrt_function_header_t* ffrt_create_function_wrapper(const ffrt_function_t func,
const ffrt_function_t after_func, void* arg)
{
FFRT_STATIC_ASSERT(sizeof(c_function) <= ffrt_auto_managed_function_storage_size,
size_of_function_must_be_less_than_ffrt_auto_managed_function_storage_size);
c_function* f = (c_function*)ffrt_alloc_auto_managed_function_storage_base(ffrt_function_kind_general);
f->header.exec = ffrt_exec_function_wrapper;
f->header.destroy = ffrt_destroy_function_wrapper;
f->func = func;
f->after_func = after_func;
f->arg = arg;
return (ffrt_function_header_t*)f;
}
static inline void ffrt_submit_c(ffrt_function_t func, const ffrt_function_t after_func,
void* arg, const ffrt_deps_t* in_deps, const ffrt_deps_t* out_deps, const ffrt_task_attr_t* attr)
{
ffrt_submit_base(ffrt_create_function_wrapper(func, after_func, arg), in_deps, out_deps, attr);
}
void ffrt_cv_task(void*)
{
ffrt_cond_t cond;
int ret = ffrt_cond_init(&cond, NULL);
if (ret != ffrt_success) {
printf("error\n");
}
int a = 0;
ffrt_mutex_t lock_;
tuple t = {&cond, &a, &lock_};
ret = ffrt_mutex_init(&lock_, NULL);
if (ret != ffrt_success) {
printf("error\n");
}
ffrt_submit_c(func1, NULL, &t, NULL, NULL, NULL);
ffrt_submit_c(func2, NULL, &t, NULL, NULL, NULL);
ffrt_wait();
ffrt_cond_destroy(&cond);
ffrt_mutex_destroy(&lock_);
}
int main(int narg, char** argv)
{
ffrt_submit_c(ffrt_cv_task, NULL, NULL, NULL, NULL, NULL);
ffrt_wait();
return 0;
}
预期输出为:
a=1
- 该例子为功能示例,实际中并不鼓励这样使用
杂项
ffrt_usleep
- FFRT 提供的类似 C11 sleep 和 linux usleep 的性能实现
声明
int ffrt_usleep(uint64_t usec);
参数
usec
- 睡眠的 us 数
返回值
- 不涉及
描述
-
该接口只能在 FFRT task 内部调用,在 FFRT task 外部调用存在未定义的行为
-
该功能能够避免传统的 sleep 睡眠时陷入内核的问题,在使用得当的条件下将会有更好的性能
样例
#include <stdio.h>
#include "ffrt.h"
void func(void* arg)
{
time_t current_time = time(NULL);
printf("Time: %s", ctime(¤t_time));
ffrt_usleep(2000000); // 睡眠 2 秒
current_time = time(NULL);
printf("Time: %s", ctime(¤t_time));
}
typedef struct {
ffrt_function_header_t header;
ffrt_function_t func;
ffrt_function_t after_func;
void* arg;
} c_function;
static void ffrt_exec_function_wrapper(void* t)
{
c_function* f = (c_function*)t;
if (f->func) {
f->func(f->arg);
}
}
static void ffrt_destroy_function_wrapper(void* t)
{
c_function* f = (c_function*)t;
if (f->after_func) {
f->after_func(f->arg);
}
}
#define FFRT_STATIC_ASSERT(cond, msg) int x(int static_assertion_##msg[(cond) ? 1 : -1])
static inline ffrt_function_header_t* ffrt_create_function_wrapper(const ffrt_function_t func,
const ffrt_function_t after_func, void* arg)
{
FFRT_STATIC_ASSERT(sizeof(c_function) <= ffrt_auto_managed_function_storage_size,
size_of_function_must_be_less_than_ffrt_auto_managed_function_storage_size);
c_function* f = (c_function*)ffrt_alloc_auto_managed_function_storage_base(ffrt_function_kind_general);
f->header.exec = ffrt_exec_function_wrapper;
f->header.destroy = ffrt_destroy_function_wrapper;
f->func = func;
f->after_func = after_func;
f->arg = arg;
return (ffrt_function_header_t*)f;
}
static inline void ffrt_submit_c(ffrt_function_t func, const ffrt_function_t after_func,
void* arg, const ffrt_deps_t* in_deps, const ffrt_deps_t* out_deps, const ffrt_task_attr_t* attr)
{
ffrt_submit_base(ffrt_create_function_wrapper(func, after_func, arg), in_deps, out_deps, attr);
}
int main(int narg, char** argv)
{
ffrt_submit_c(func, NULL, NULL, NULL, NULL, NULL);
ffrt_wait();
return 0;
}
预期输出为
Time: Tue Aug 13 11:34:40 2024
Time: Tue Aug 13 11:34:42 2024
ffrt_yield
- 当前 task 主动让出 CPU 执行资源,允许其他可执行的 task 运行,如果没有其他可执行的 task,yield 无效
声明
void ffrt_yield();
参数
- 不涉及
返回值
- 不涉及
描述
-
该接口只能在 FFRT task 内部调用,在 FFRT task 外部调用存在未定义的行为
-
此函数的确切行为取决于实现,特别是使用中的 FFRT 调度程序的机制和系统状态
样例
- 省略
维测
长耗时任务监测
描述
-
长耗时任务打印机制
当任务执行时间超过一秒时,会触发一次堆栈打印,后续该任务堆栈打印频率调整为一分钟。连续打印十次后,打印频率调整为十分钟。再触发十次打印后,打印频率固定为三十分钟。 -
该机制的堆栈打印调用的是 DFX 的
GetBacktraceStringByTid
接口,该接口会向阻塞线程发送抓栈信号,触发中断并抓取调用栈返回。
样例
在对应进程日志中搜索 RecordSymbolAndBacktrace
关键字,对应的日志示例如下:
W C01719/ffrt: 60500:RecordSymbolAndBacktrace:159 Tid[16579] function occupies worker for more than [1]s.
W C01719/ffrt: 60501:RecordSymbolAndBacktrace:164 Backtrace:
W C01719/ffrt: #00 pc 00000000000075f0 /system/lib64/module/file/libhash.z.so
W C01719/ffrt: #01 pc 0000000000008758 /system/lib64/module/file/libhash.z.so
W C01719/ffrt: #02 pc 0000000000012b98 /system/lib64/module/file/libhash.z.so
W C01719/ffrt: #03 pc 000000000002aaa0 /system/lib64/platformsdk/libfilemgmt_libn.z.so
W C01719/ffrt: #04 pc 0000000000054b2c /system/lib64/platformsdk/libace_napi.z.so
W C01719/ffrt: #05 pc 00000000000133a8 /system/lib64/platformsdk/libuv.so
W C01719/ffrt: #06 pc 00000000000461a0 /system/lib64/chipset-sdk/libffrt.so
W C01719/ffrt: #07 pc 0000000000046d44 /system/lib64/chipset-sdk/libffrt.so
W C01719/ffrt: #08 pc 0000000000046a6c /system/lib64/chipset-sdk/libffrt.so
W C01719/ffrt: #09 pc 00000000000467b0 /system/lib64/chipset-sdk/libffrt.so
该维测会打印出 worker 上执行时间超过阈值的任务堆栈、worker 线程号、执行时间,请自行根据堆栈找对应组件确认阻塞原因。
注意事项
如果代码中存在 sleep
等会被中断唤醒的阻塞,用户需主动接收该阻塞的返回值,并重新调用。
示例如下:
unsigned int leftTime = sleep(10);
while (leftTime != 0) {
leftTime = sleep(leftTime);
}
部署
部署方式

-
FFRT 的部署依赖 FFRT 动态库
libffrt.so
和一组头文件 -
FFRT 的头文件为
ffrt.h
,内部包含了 C++ API,C API 和 C base API- ffrt.h 定义为:
#ifndef FFRT_API_FFRT_H #define FFRT_API_FFRT_H #ifdef __cplusplus #include "cpp/task.h" #include "cpp/deadline.h" #include "cpp/sys_event.h" #include "cpp/mutex.h" #include "cpp/condition_variable.h" #include "cpp/sleep.h" #include "cpp/thread.h" #include "cpp/config.h" #include "cpp/future.h" #else #include "c/task.h" #include "c/deadline.h" #include "c/sys_event.h" #include "c/mutex.h" #include "c/condition_variable.h" #include "c/sleep.h" #include "c/thread.h" #include "c/config.h" #endif #endif
- C base API 定义示例:
void ffrt_submit_base(ffrt_function_header_t* func, ...); int ffrt_mutex_init(...);
- C API 定义示例:
static inline void ffrt_submit(ffrt_function_t func, void* arg, ...) { ffrt_submit_base(ffrt_create_function_wrapper(func, arg), ...); }
- C++ API 定义示例:
namespace ffrt { static inline void submit(std::function& func, ...) { ffrt_submit_base(ffrt_create_function_wrapper(func), ...); } struct mutex { mutex() { ffrt_mutex_init(...); ... }; }
-
出于易用性方面的考虑,除非必要,强烈建议你使用 C++ API,调用 C API 将会使你的代码非常臃肿或者更容易产生资源未释放问题
需求列表 |
---|
需求 1:ABI 兼容性,在 NDK 场景中由于用户的编译环境与 FFRT 的编译环境不同,使用 C++ 接口可能存在 ABI 兼容性问题,要有解决方案 |
需求 2:用户的编译环境为纯 C 编译环境,不想因为引入 FFRT 而引入 C++ 元素的场景,要有解决方案 |
需求 3:易用性,尽可能让接口简单易用,用户少出错 |
- 对于需求 1,通过在用户调用的 C++ 接口和 FFRT 的实现之间增加一个 C base API 层,并基于头文件方式将 API 中的 C++ 的元素编译到用户的 so,从而解决 ABI 兼容的问题
- 对于需求 2,可以通过 C Base API 解决
- 对于需求 3,建议用户尽可能使用 C++ API,以避免 C API 固有的资源未初始化/释放、参数冗长等问题,对于不得不使用 C API 的场景,FFRT 仍然支持用户使用 C API 和 C base API
实战指南
步骤 1: 分析应用
使用 FFRT 并行编程的第一步便是您需要了解你的应用。
【建议 1】:使用 Task 梳理应用的流程。
使用 Task 梳理应用的流程,并且尽可能使用数据来表达 Task 之间的依赖。当然如果两个 Task 之间如无数据依赖,仅存在控制依赖,您也可以创建一个虚拟的(或者逻辑上的)数据依赖。

基于数据流图,可以很容易判定出哪些 Task 是可以并发的,比如,Slice0 的 NPU Task 和 Slice1 的 GPU Pre Task 是可以并发的,因为它们没有任何依赖。
反过来,如果并发的效果不理想,也可以通过调整数据流图来优化并发。例如,假如上图中 GPU Pre Task 执行时间有很大波动,但平均耗时略小于 NPU Task,会出现某些时刻 GPU Pre Task 拖慢整个执行时间。此时,如果将 GPU Pre Task 的输出 Buffer 改成 3 个(或者更多)的 Buffer,可以增加 GPU Pre Task 和 NPU Task 的并发机会,将降低波动对总执行时间的影响。
【建议 2】:这里不用太担心 Task 大或小的问题,因为 FFRT 允许你在 Task 内部继续拆分 SubTask,可以逐步细化。
下图中,第一次画数据流图时,可以不将 FaceDirection 和 UpdateExistFaceImageInfo 两个 Task 展开,可以逐步细化。

【建议 3】:上述流程图或者数据流图不要求是静态图(即 Task 数量和 Task 依赖关系是固定的)
FFRT 允许动态提交 Task,在编程界面上不体现图的概念,FFRT 内部会根据 Task 之间的依赖关系动态调整数据流图的节点。
【建议 4】:尽可能对应用做热点分析
如果是对存量代码的 FFRT 化改造,那么,使用 System Trace 这类工具能帮助您聚焦在性能热点上,比如下图可以很容易知道当前的性能 Bound,在分析数据流图时,可以重点关注这些热点任务。

步骤 2: 并行化应用
【建议 1】:不要直接使用线程,使用 FFRT 提交 Task。
如果应用中有明显的数据依赖关系,那么 FFRT 将会非常适合;最差的情况是应用没有数据依赖或难以并行(如果真的存在),您仍然可以把 FFRT 当做一个高效的进程级线程池、或者协程库去使用它,但非常不建议你继续创建线程。
【建议 2】:Task 最好被建模为纯函数。
纯函数是指其执行没有副作用,例如更新全局数据结构。每个任务都依赖于其输入/输出签名来连接到其他任务。
请注意,即使 Task 不是"纯"的,FFRT 仍然适用。只要任务使用的数据依赖或者锁足以保证正确执行,FFRT 就能正常工作。
【建议 3】:尽可能尝试通过 inDeps
/outDeps
表达依赖,而不是使用 ffrt::wait()
。
这是因为 FFRT 跟踪和处理 inDeps
/outDeps
比调用显式 ffrt::wait() 函数更自然、更便宜。
【建议 4】:注意 Task 粒度
以适当的粒度提交任务至关重要:目前每个任务的调度开销约为 10 us。如果 Task 的粒度非常小,那么开销的百分比将会很高。FFRT 会继续基于软硬件的方式优化调度开销。
【建议 5】:尽可能使用 FFRT 原语
如果需要 mutex、sleep、异步 I/O,请使用 FFRT 原语,而不是使用 OS 提供的版本。因为这些 FFRT 提供的实现在与 FFRT 配合时开销将会更小。
【建议 6】:在需要时,使用 ffrt::wait()
确保栈变量的生命周期。
如果子任务使用驻留在父任务栈上的数据,则父任务应避免在子任务执行完成前返回。在父任务的末尾添加 ffrt::wait()
可以解决这个问题。
步骤 3: 优化应用
【建议 1】:基于 System Trace,分析并行是否符合预期
FFRT 已经内置 SysTrace 支持,默认以 txx.xx 表示,非常有利于分析 Task 粒度和并发度。未来,在性能分析和维测方面将继续增强。

【建议 2】:对于耗时的 Task,尝试提交 SubTask,提升应用的并行度
【建议 3】:在合适的场景,使用 Deadline 调度,实现能效和性能的平衡
方案正在验证中,待更新。
样例:CameraHal QuickThumb
步骤 1: 分析应用

-
QuickThumb 是 CameraHal 中实现的对一张图片进行缩小的功能,整体运行时间约 30 us;
-
在实现上分为两层循环,外层的一次循环输出 1 行,内层的 1 次循环输出该行的 m 列;
-
在划分 Task 时,一种简单的做法是 1 行的处理就是 1 个 Task。
步骤 2: 并行化应用

-
根据纯函数的定义,该 Task 的输入输出的数据是非常之多的,因此,这个场景下使用更宽泛的纯函数的定义,只需要考虑在 Task 内部会被写,但是却被定义在 Task 外部的变量即可;
-
按照上面的原则,将 py/puv 的定义移到 Task 内部可避免多个 Task 同时写 py/puv 的问题;
-
s32r 的处理可以有两种方式,都能得到正确的功能:a. 保持定义在 Task 外部,但作为 Task 的输出依赖;b. 将 s32r 定义在 Task 内部,作为 Task 的私有变量。显然,b 方案能够获得更好的性能
步骤 3: 优化应用
通过 System Trace,会发现上述改造方案的 Task 粒度较小,大约单个 Task 耗时在 5us 左右,因此,扩大 Task 的粒度为 32 行处理,得到最终的并行结果,下图为使用 4 小核和 3 中核的结果。

样例:Camera AI-RAW
步骤 1: 分析应用
<img src=“images/image-20220926153611121.png” alt =“images/image-20220926153611121.png” "style=“zoom:70%” />
AI-RAW 的处理包括了 3 个处理步骤,在数据面上,可以按 slice 进行切分,在不考虑 pre_outbuf 和 npu_outbuf 在 slice 间复用的情况下,数据流图如上图所示。

为了节省运行过程中的内存占用,但不影响整体性能,可以只保留 2 个 pre_outbuf 和 2 个 npu_outbuf。
为此付出的代价是:Buffer 的复用产生了slice3 的GPU Pre Task 依赖slice1 的NPU Task 完成,俗称反压,又称生产者依赖关系。但是,如果您使用 FFRT 来实现,将会是非常自然而高效的
步骤 2: 并行化应用
constexpr uint32_t SLICE_NUM = 24;
constexpr uint32_t BUFFER_NUM = 2;
int input[SLICE_NUM]; // input is split into SLICE_NUM slices
int pre_outbuf[BUFFER_NUM]; // gpu pre task output buffers
int npu_outbuf[BUFFER_NUM]; // npu output buffers
int output[SLICE_NUM]; // output is split into SLICE_NUM slices
for (uint32_t i = 0; i < SLICE_NUM; i++) {
uint32_t buf_id = i % BUFFER_NUM;
ffrt::submit(gpuPreTask, {input + i}, {pre_outbuf + buf_id});
ffrt::submit(npuTask, {pre_outbuf + buf_id}, {npu_outbuf + buf_id});
ffrt::submit(gpuPostTask, {npu_outbuf + buf_id}, {output + i});
}
ffrt::wait();
步骤 3: 优化应用

基于以上实现,从上面的 Trace 中我们可以观察到,NPU 的计算得到了充分利用,整个系统的性能表现卓越,而付出的开发代价将会比 GCD 或多线程小的多。
样例:Camera FaceStory
步骤 1: 分析应用

步骤 2: 并行化应用

代码改造样例
-
该场景输出存量代码迁移,只需将原先串行的代码以 Task 的方式提交即可;
-
过程中需要考虑 Data Race 和数据生命周期;
-
先提交大的 Task,根据需要逐步拆分 SubTask。
步骤 3: 优化应用


并行化的收益来自于:
-
多分支或循环并发,实现 CPU 前后处理和 NPU 的并发
-
子任务拆分,进一步提升并行度
-
基于数据流图优化 CPU L2 Cache Flush 频次
-
NPU Worker Thread 实时优先级调整,后续 FFRT 中考虑独立出 XPU 调度 Worker 来保证实时性
-
在未来,模型加载使用 FFRT submit,模型加载内部也可以使用 submit 来继续拆分,能够优化整个业务的启动耗时。
使用建议
建议 1: 函数化
基本思想:计算过程函数化
- 程序过程各步骤以函数封装表达,函数满足类纯函数特性
- 无全局数据访问
- 无内部状态保留
- 通过 ffrt::submit() 接口以异步任务方式提交函数执行
- 将函数访问的数据对象以及访问方式在 ffrt::submit() 接口中的 in_deps/out_deps 参数表达
- 程序员通过 inDeps/outDeps 参数表达任务间依赖关系以保证程序执行的正确性
做到纯函数的好处在于:1. 能够最大化挖掘并行度,2.避免 DataRace 和锁的问题
在实际中,可以根据场景放松纯函数的约束,但前提是:
- 确定添加的 in_deps/out_deps 可确保程序正确执行
- 通过 FFRT 提供的锁机制保护对全局变量的访问
建议 2: 注意任务粒度
-
FFRT 管理和调度异步任务执行有调度开销,任务粒度(执行时间)需匹配调度开销
-
大量小粒度任务造成 FFRT 调度开销占比增加,性能下降,解决方法:
- 将多个小粒度任务聚合为大粒度任务一次发送给 FFRT 异步执行
- 同步方式执行小粒度任务,不发送给 FFRT 异步执行。需注意和异步任务之间的数据同步问题,在需要同步的地方插入
ffrt::wait()
- 下面的例子中,fib_ffrt2 会比 fib_ffrt1 拥有更好的性能
#include "ffrt.h" void fib_ffrt1(int x, int& y) { if (x <= 1) { y = x; } else { int y1, y2; ffrt::submit([&] {fib_ffrt1(x - 1, y1);}, {&x}, {&y1} ); ffrt::submit([&] {fib_ffrt1(x - 2, y2);}, {&x}, {&y2} ); ffrt::submit([&] {y = y1 + y2;}, {&y1, &y2}, {} ); ffrt::wait(); } } void fib_ffrt2(int x, int& y) { if (x <= 1) { y = x; } else { int y1, y2; ffrt::submit([&] {fib_ffrt2(x - 1, y1);}, {&x}, {&y1} ); ffrt::submit([&] {fib_ffrt2(x - 2, y2);}, {&x}, {&y2} ); ffrt::wait({&y1, &y2}); y = y1 + y2; } }
建议 3: 数据生命周期
- FFRT 的任务提交和执行是异步的,因此需要确保任务执行时,对任务中涉及的数据的访问是有效的
- 常见问题:子任务使用父任务栈数据,当父任务先于子任务执行完成时释放栈数据,子任务产生数据访问错误
- 解决方法 1:父任务中增加
ffrt::wait()
等待子任务完成
#include "ffrt.h"
void fib_ffrt(int x, int& y)
{
if (x <= 1) {
y = x;
} else {
int y1, y2;
ffrt::submit([&] {fib_ffrt(x - 1, y1);}, {&x}, {&y1} );
ffrt::submit([&] {fib_ffrt(x - 2, y2);}, {&x}, {&y2} );
ffrt::submit([&] {y = y1 + y2;}, {&y1, &y2}, {} );
ffrt::wait(); // 用于保证 y1 y2 的生命周期
}
}
- 解决方法 2:将数据由栈移到堆,手动管理生命周期
#include "ffrt.h"
void fib_ffrt(int x, int* y)
{
if (x <= 1) {
*y = x;
} else {
int *y1 = (int*)malloc(sizeof(int));
int *y2 = (int*)malloc(sizeof(int));
ffrt::submit([=] {fib_ffrt(x - 1, y1);}, {}, {y1} );
ffrt::submit([=] {fib_ffrt(x - 2, y2);}, {}, {y2} );
ffrt::submit([=] {*y = *y1 + *y2; }, {y1, y2}, {} );
ffrt::wait();
}
}
建议 4: 使用 FFRT 提供的替代 API
- 禁止在 FFRT 任务中使用系统线程库 API 创建线程,使用 submit 提交任务
- 使用 FFRT 提供的锁,条件变量,睡眠,IO 等 API 代替系统线程库 API
- 使用系统线程库 API 可能造成工作线程阻塞,引起额外性能开销
建议 5: Deadline 机制
- 必须用于具备周期/重复执行特征的处理流程
- 在有明确时间约束和性能关键的处理流程中使用,避免滥用
- 在相对大颗粒度的处理流程中使用,例如具有 16.6ms 时间约束的帧处理流程
建议 6: 从线程模型迁移
- 创建线程替代为创建 FFRT 任务
- 线程从逻辑上类似无 in_deps 的任务
- 识别线程间的依赖关系,并将其表达在任务的依赖关系 in_deps/out_deps 上
- 线程内计算过程分解为异步任务调用
- 通过任务依赖关系和锁机制避免并发任务数据竞争问题
已知限制
thread local 使用约束
-
FFRT Task 中使用 thread local 存在风险,说明如下:
-
thread local 变量包括 C/C++ 语言提供的 thread_local 定义的变量,使用 pthread_key_create 创建的变量
-
FFRT 支持 Task 调度,Task 调度到哪个线程是随机的,使用 thread local 是有风险的,这一点和所有支持 Task 并发调度的框架一样
-
FFRT 的 Task 默认以协程的方式运行,Task 执行过程中可能发生协程退出,恢复执行时,执行该任务的线程可能发生变更
thread 绑定类使用约束
- FFRT 支持 Task 调度,Task 调度到哪个线程是随机的,thread_idx/线程优先级/线程亲和性等与 thread 绑定的行为禁止在 task 中使用
recursive mutex 使用约束
-
FFRT Task 中使用标准库的 recursive mutex 可能发生死锁,需要更换为 FFRT 提供的 recursive mutex,说明如下:
-
recursive mutex 在 lock() 成功时记录调用者"执行栈"作为锁的 owner,在后续 lock() 时会判断调用者是否为当前执行栈,如果是则返回成功,以支持在同一个执行栈中嵌套获取锁。在标准库的实现中,"执行栈"以线程标识表示。
-
在 FFRT Task 中使用标准库的 recursive mutex,如果在外层和内层 lock() 之间,发生 Task(协程)退出,Task 恢复执行时在不同于首次调用 lock() 的 FFRT Worker 上,则判断当前线程不是 owner,lock() 失败,FFRT Worker 挂起,后面的 unlock() 不会被执行,从而出现死锁。
FFRT 对使用 fork() 场景的支持说明
- 在未使用 FFRT 的进程中,创建子进程,支持在该子进程中使用 FFRT。
- 在已经使用 FFRT 的进程中,以 fork()(无 exec())方式创建子进程,不支持在该子进程中使用 FFRT。
- 在已经使用 FFRT 的进程中,以 fork()+exec() 方式创建子进程,支持在子进程中使用 FFRT。
以动态库方式部署 FFRT
- 只能以动态库方式部署 FFRT,静态库部署可能有多实例问题,例如:当多个被同一进程加载的 so 都以静态库的方式使用 FFRT 时,FFRT 会被实例化成多份,其行为是未知的,这也不是 FFRT 设计的初衷
C API 中初始化 FFRT 对象后,对象的置空与销毁由用户负责
- 为保证较高的性能,FFRT 的 C API 中内部不包含对对象的销毁状态的标记,用户需要合理地进行资源的释放,重复调用各个对象的 destroy 操作,其结果是未定义的
- 错误示例 1,重复调用 destroy 可能造成不可预知的数据损坏
#include "ffrt.h"
void abnormal_case_1()
{
ffrt_task_handle_t h = ffrt_submit_h([](){printf("Test task running...\n");}, NULL, NULL, NULL, NULL, NULL);
...
ffrt_task_handle_destroy(h);
ffrt_task_handle_destroy(h); // double free
}
- 错误示例 2,未调用 destroy 会造成内存泄漏
#include "ffrt.h"
void abnormal_case_2()
{
ffrt_task_handle_t h = ffrt_submit_h([](){printf("Test task running...\n");}, NULL, NULL, NULL, NULL, NULL);
...
// memory leak
}
- 建议示例,仅调用一次 destroy,如有必要可进行置空
#include "ffrt.h"
void normal_case()
{
ffrt_task_handle_t h = ffrt_submit_h([](){printf("Test task running...\n");}, NULL, NULL, NULL, NULL, NULL);
...
ffrt_task_handle_destroy(h);
h = nullptr; // if necessary
}
输入输出依赖数量的限制
- 使用 submit 接口进行任务提交时,每个任务的输入依赖和输出依赖的数量之和不能超过 8 个。
- 使用 submit_h 接口进行任务提交时,每个任务的输入依赖和输出依赖的数量之和不能超过 7 个。
- 参数既作为输入依赖又作为输出依赖的时候,统计依赖数量时只统计一次,如输入依赖是{&x},输出依赖也是{&x},实际依赖的数量是 1。