回溯算法:组合总和问题一网打尽

回溯算法:组合问题I,II,III

组合问题在这里插入图片描述

回溯+剪枝代码如下:

剪枝过程:i + (k - path.size()) <= n + 1,数组为单调递增的,当前位置不成立后,后序数字也无需进行比较了

class Solution {
public:
    vector<vector<int>> res;
    vector<int> path;
    vector<vector<int>> combine(int n, int k) {
        int step = 0;
        int start = 1;
        backtrack(n, k, start, step);
        return res;
    }
    void backtrack(int n, int k, int start, int step)
    {
        //退出条件
        if(step == k)
        {
            res.push_back(path);
            return;
        }
        //单层节点的操作
        for(int i = start; i + (k - path.size()) <= n + 1; i++)
        {
            step++;
            path.push_back(i);
            //递归
            backtrack(n, k, i + 1, step);
            //回溯
            step--;
            path.pop_back();
        }
    }
};

组合总和问题

在这里插入图片描述
思路:回溯+剪枝

剪枝过程:i < candidates.size() && sum + candidates[i] <= target在for循环内进行控制,注意,剪枝的话需要将数组进行从小到大排序,具体原因说明见代码:

class Solution {
public:
    vector<vector<int>> res;
    vector<int> path;
    vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
        int sum = 0;
        //需要排序candidates =【2,7,6,3,5,1】,target =【9】 
        //假如第+candidates【0】>target,但是+candidates【5】=target
        //那么不排序的话for循环直接终止,后面的也就无法比较了
         sort(candidates.begin(), candidates.end()); 
        backtrack(candidates, target, sum, 0);
        return res;
    }
    void backtrack(vector<int>& candidates, int target, int sum, int startIndex)
    {
        if(sum == target)
        {
            res.push_back(path);
            return;
        }
        if(sum > target)
        {
            return;
        }
        for(int i = startIndex; i < candidates.size() && sum + candidates[i] <= target; i++)
        {
            path.push_back(candidates[i]);
            sum += candidates[i];
            //递归
            backtrack(candidates, target, sum, i);
            //回溯
            path.pop_back();
            sum -= candidates[i];
        }
    }
};

组合总和问题II

在这里插入图片描述
思路:与之前不同的是需要去重

condidates:【1,1,2, 5,6,7,10】 target = 8

第一想法是去重嘛,这还不简单,啪的一声很快啊!写出来candidates[i] == candidates[i-1]

这样出大问题,你控制的不是同一层的重复元素,简单点说【1,1,6】这种情况就直接没有了,因此正确的去重:i > startIndex && candidates[i] == candidates[i-1]

代码:

class Solution {
public:
    vector<vector<int>> res;
    vector<int> path;
    vector<vector<int>> combinationSum2(vector<int>& candidates, int target) 
    {
        //排序
        sort(candidates.begin(), candidates.end());
        int sum = 0;
        vector<bool> use(candidates.size(), false);
        backtrack(candidates, target, sum, 0, use);
        return res;
    }
        
        void backtrack(vector<int>& candidates, int target, int sum, int startIndex, vector<bool>& use)
    {
        if(sum == target)
        {
            res.push_back(path);
            return;
        }
        for(int i = startIndex; i < candidates.size() && sum + candidates[i] <= target; i++)
        {
            //对同一层相同元素进行跳过
           if(i > startIndex && candidates[i] == candidates[i-1])
                continue;
            path.push_back(candidates[i]);
            sum += candidates[i];
            //递归
            backtrack(candidates, target, sum, i + 1, use);
            //回溯
            path.pop_back();
            sum -= candidates[i];
        }
    }
};

组合总和问题 III

在这里插入图片描述
思路:和组合总和I大同小异

class Solution {
public:
    vector<vector<int>> res;
    vector<int> path;
    vector<vector<int>> combinationSum3(int k, int n) {
        int startIndex = 1;
        int sum = 0;
        backtrack(k, n, startIndex, sum);
        return res;
    }
    void backtrack(int k, int n, int startIndex, int sum)
    {
        //退出条件
        if(path.size() == k)
        {
            if(sum == n)
            {
                res.push_back(path);
            }
            return;
        }
        //单层节点处理
        for(int i = startIndex; i <= 9; i++)
        {
            path.push_back(i);
            sum += i;
            //递归
            backtrack(k, n, i + 1, sum);
            //回溯
            sum -= i;
            path.pop_back();
        }
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值