如何理解t检验、t分布、t值?

本文介绍了t检验的历史,它由健力士公司员工戈斯特提出,因公司规定以“学生”笔名发表,又称“学生t检验”。还阐述了t检验思路,以啤酒厂比较两种种植工艺产量为例,说明需综合样本均值、方差和数量得出t值。最后介绍了t分布及如何根据t值和P值进行假设检验。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

t检验、t分布、t值其实都是同一个数学概念中的不同部分。


1 t检验的历史

阿瑟·健力士公司(Arthur Guinness Son & Co.)是一家由阿瑟·健力士(Arthur Guinness)于1759年在爱尔兰都柏林建立的一家酿酒公司:

不过它最出名的却不是啤酒,而是《吉尼斯世界纪录大全》:

1951年11月10日,健力士酒厂的董事休·比佛爵士(Sir Hugh Beaver)在爱尔兰韦克斯福德郡打猎时,因为没打中金鸻,于是和同行们争论哪种鸟飞得最快,彼此争论不休。由于当时的参考资料并不足以回答这个问题,这促使比弗想出版一本记载世界之最的书,这就是后来的《吉尼斯世界纪录大全》。

还有一个让健力士公司在历史留名的,就是他的员工威廉·希利·戈斯特(1876-1937):

在健力士公司,戈斯特提出了t检验以降低啤酒质量监控的成本,但健力士酒厂为了保护公司的商业机密和智慧财产,明文禁止员工发表文章。

戈斯特并没有因为这项规定而放弃他的学术研究发表,他在《生物统计期刊》以“学生”(The Student)为笔名,发表了关于t检验的文章,所以t检验又称为“学生t检验”。

直到1937年,戈斯特因心脏病去世之前,健力士酒厂一直不知道戈斯特从事统计研究工作,并以“学生”笔名发表研究成果。许多统计研究者要和戈斯特见面,都必须像间谍电影般地秘密安排见面地点和时间。

现在位于都柏林的健力士专卖店中有一个戈斯特的纪念碑,上面写著“化学家、统计学家威廉·希利·戈斯特,首席酿酒师,学生t检验”:


2 t检验的思路

啤酒,主要原料是大麦,啤酒厂肯定是希望尽力提高亩产。

比如,健力士公司有下面两块麦田:

左边的麦田采用传统A工艺进行种植,平均每株大麦可以结100粒穗子。

而右边的麦田采用改进过的B工艺种植,健力士公司想知道“B工艺是否提高了产量”。

为了节约成本、减小损耗,抠门的健力士公司从B工艺的麦田中采样了5株大麦,样本均值为120粒穗子。然后把难题抛给了戈斯特。

似乎直观看来产量提高了,毕竟均值增加了,可是戈斯特想得更多一些。

2.1 戈斯特的分析

戈斯特提出一个假设检验:

  • 假设:B工艺没有提高产量,即AB下的麦穗都是同一个分布

  • 检验:看看在此假设下,发生的概率高不高

已知的数据是,A工艺下的单株麦穗的个数服从,标准差未知的正态分布:

而B工艺下的麦田的样本均值,采样了5株。

不同的标准差对应的正态分布图像不同:

图像的跨度由标准差决定:

如果服从以下正态分布:

,跨度不大,采样五个点使其的图像如下:

可见,的概率非常低,即AB下的麦穗是同一个分布的可能性不大,我们有很大把握可以认为B工艺真正提高了产量。

而如果服从的是跨度更大的正态分布,采样五个点使其的图像如下(为了演示,正态分布的参数选的不是很严谨):

这样的正态分布下,的概率并不低,即AB下的麦穗还是可能为同一个分布的,我们没十足的把握认为B工艺提高了产量。

因此,看起来不能单纯依靠,或许除以样本标准差可以消除跨度的影响:

因为A工艺的我们不清楚,但是我们假设AB同分布,所以直接使用了样本标准差

当然,样本数也会影响结果。比如说,在下,得到,那么根据大数定理,我们不用算了,基本上可以认为“B工艺提高了产量”。

所以,戈斯特认为应该综合考虑样本均值、样本方差和样本数,给出了一个统计量t值:

该统计量越大说明AB工艺导致的差别越大,越有可能说明“B工艺提高了产量”。


3 t分布

对于t值:

对应的概率密度函数,也就是t分布为:

其中,也叫做自由度。而为伽马函数。

接近于正态分布(灰色的虚线就是),下面是的t分布:

而t值,实际上对应的就是横坐标的值,比如说t值等于4:

t=4之后的曲线下面积其实就是P值

所以,我们知道t值之后,就可以根据以及要求的P值,查出当前的t值是否会拒绝我们的假设。

举个例子,比如本文中的AB工艺下的数据为:

计算出来:

服从的t分布:

如果我们要求的显著水平的话,那么就可以拒绝“B工艺没有提高产量”这个假设了。

### 关于t检验中的t计算方法及其一般范围 #### t的定义与计算方法 t是通过比较两个样本均之间的差异来衡量其统计显著性的指标。具体来说,t可以通过以下公式计算: \[ t = \frac{\bar{X}_1 - \bar{X}_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \] 其中: - $\bar{X}_1$ $\bar{X}_2$ 是两组样本的均, - $s_p$ 是合并标准误差 (pooled standard error),表示为: \[ s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}} \] 这里 $s_1^2$ $s_2^2$ 分别代表两组样本的标准差平方(方差),而 $n_1$ $n_2$ 则分别代表每组样本的数量。 对于配对样本t检验,则可以简化为单一样本t检验的形式,即: \[ t = \frac{\bar{D}}{s_D / \sqrt{n}} \] 这里 $\bar{D}$ 表示成对观测之间差异的平均,$s_D$ 是这些差异的标准偏差,$n$ 是成对数量[^1]。 #### t的一般范围 理论上,t可以在负无穷到正无穷范围内取任何数。然而,在实际应用中,t的具体大小取决于以下几个因素: - 样本均间的差异:较大的均差异会增加绝对t; - 数据变异性:较高的数据变异会导致较小的t; - 样本容量:更大的样本量通常会产生更高的t得注意的是,当t远离0时,表明观察到的数据更可能支持备择假设而非零假设。这通常是由于较大或较明显的效应所致[^3]。 在实践中,研究人员常关注由特定软件包返回的结果,例如Python中的`scipy.stats.ttest_rel()`函数或者R语言内置的相关功能,它们能够自动完成上述复杂运算并提供最终的t统计量以及对应的p[^4]。 ```python from scipy.stats import ttest_rel # 配对样本t检验示例代码 data1 = [value...] # 替换为您的第一个样本集 data2 = [value...] # 替换为第二个匹配样本集 t_stat, p_value = ttest_rel(data1, data2) print(f"T-statistic: {t_stat}, P-value: {p_value}") ``` 尽管如此,为了深入理解t检验背后的原理,有时也需要手动执行部分步骤甚至整个过程,比如利用已知的临界t分布表查找对应概率密度下的确切位置,从而估算出近似p作为验证手段之一[^2]。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

马同学图解数学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值