
统计与概率
文章平均质量分 81
马同学图解数学
这个作者很懒,什么都没留下…
展开
-
如何理解方差分析和F分布?
2020年初,整个世界遭受了新冠病毒地袭击,直到今天人类还没有走出阴霾。抗疫前线的医学专家们日以继夜地工作,同时进行着多种药物的临床试验。那么怎么判断哪一种药物效果更好呢?这就要说到一百年前问世的方差分析。1 费希尔的简介罗纳德·艾尔默·费希尔爵士(英语:Sir Ronald Aylmer Fisher,1890-1962,),英国统计学家、演化生物学家与遗传学家。现代统计学与现代进化论的奠基者之一。安德斯·哈尔德称他是“一位几乎独自建立现代统计科学的天才”:本文下面要讲到的方差分析、F原创 2020-11-19 16:20:55 · 8082 阅读 · 2 评论 -
沉没成本不是成本-----通俗解释几何分布与指数分布的无记忆性?
在经济学上,有一个概念是沉没成本,大概指的是已经付出的、且不可收回的成本。针对这个概念有一个常见的说法:这句话的意思是,既然沉没成本不可收回,那么在做选择的时候就不应该考虑它。举一个简单的例子,买票去看电影,放映10分钟你就知道这是一部烂片,那么有两个选项(图片出自沉没成本谬误):此时这张电影票已经消费了,没有办法收回,购买电影票的钱就是沉没成本。这个时候如果想离开电影院就直接离开,不要去考虑为这张电影票付出的金钱。还有很多别的例子,这里就不一一列举了:下面要介绍的几何分布、指数分布原创 2020-11-19 15:54:24 · 2394 阅读 · 1 评论 -
如何理解统计中的特征函数?
先说结论,特征函数是随机变量的分布的不同表示形式。一般而言,对于随机变量的分布,大家习惯用概率密度函数来描述。比如说:意思就是服从正态分布,对应的概率密度函数如下:虽然概率密度函数理解起来很直观,但是确实随机变量的分布还有另外的描述方式,比如特征函数。1 关于特征1.1 剪影下面是两个剪影:是同一个人吗?不知道,看不清楚,不过如果知道这两个剪影的特征,比如: 名字 血型 身高 声音 ... 以上特征如果都一样,那么原创 2020-11-18 16:30:59 · 9429 阅读 · 8 评论 -
为什么样本方差的分母是 n-1?
先把问题完整的描述下。如果已知随机变量的期望为,那么可以如下计算方差:上面的式子需要知道的具体分布是什么(在现实应用中往往不知道准确分布),计算起来也比较复杂。所以实践中常常采样之后,用下面这个来近似:其实现实中,往往连的期望也不清楚,只知道样本的均值:那么可以这么来计算:那这里就有两个问题了: 为什么可以用来近似? 为什么使用替代之后,分母是? 我们来仔细分析下细节,就可以弄清楚这两个问题。1 为什么可以用来近似?举个例子,假设服从这么一原创 2020-11-18 15:09:45 · 2545 阅读 · 2 评论 -
如何理解t检验、t分布、t值?
t检验、t分布、t值其实都是同一个数学概念中的不同部分。1 t检验的历史阿瑟·健力士公司(Arthur Guinness Son & Co.)是一家由阿瑟·健力士(Arthur Guinness)于1759年在爱尔兰都柏林建立的一家酿酒公司:不过它最出名的却不是啤酒,而是《吉尼斯世界纪录大全》:1951年11月10日,健力士酒厂的董事休·比佛爵士(Sir Hugh Beaver)在爱尔兰韦克斯福德郡打猎时,因为没打中金鸻,于是和同行们争论哪种鸟飞得最快,彼此争论不休。由于当时原创 2020-11-18 11:49:25 · 15055 阅读 · 2 评论 -
如何理解假设检验、P值?
讲概率、论统计,肯定要从抛硬币说起啊,这才是正确打开姿势嘛。1 什么是假设检验?你说你的硬币是公平的,也就是“花”和“字”出现的概率是差不多的。然后,你想和我打赌,作为一个资深的理智赌徒,我怎能听信你的一面之词,我提出要检查下你的硬币到底是不是公平的,万一是两面“花”怎么办?电影里面不是经常出现这样的桥段?你神色紧张,死活不让我检查,后来我们提出了折衷的方案,抛几次硬币,看看结果是不是公平的。总共扔了两次,都是“花”朝上,虽然几率是,但是也正常,继续扔。总共扔了四次,也都是“花”原创 2020-11-18 11:29:56 · 3599 阅读 · 1 评论 -
如何理解置信区间
置信区间,就是一种区间估计。先来看看什么是点估计,什么是区间估计。1 点估计与区间估计以前很流行一种刮刮卡:游戏规则是(假设只有一个大奖): 大奖事先就固定好了,一定印在某一张刮刮卡上 买了刮刮卡之后,刮开就知道自己是否中奖 那么我们起码有两种策略来刮奖: 点估计:买一张,这就相当于你猜测这一张会中奖 区间估计:买一盒,这就相当于你猜测这一盒里面会有某一张中奖 很显然区间估计的命中率会更高(当然费用会更高,因为风险降低了)。接下来,我们看看置信原创 2020-11-18 11:17:15 · 7840 阅读 · 3 评论 -
如何理解概率论中的“矩”?
给我一个支点和一根足够长的棍子,我就可以举起整个地球。----阿基米德对比物理的力矩,你会发现,概率论中的“矩”真的是很有启发性的一个词。1 力矩大家应该都知道物理中的力矩,我这里也不展开说细节了,用一幅图来帮助大家回忆一下:上图中,两边能保持平衡,只要满足下面的式子就可以了(很粗糙的式子,没把力作为向量来考虑):其中,都称为力矩。可以看出上图的大,小,但由于杆子长度不同,仍然可以取得平衡。利用上图的原理,我们就可以制作出秤:2 概率论中的“矩”在概率..原创 2020-11-18 10:50:21 · 6709 阅读 · 3 评论 -
如何通俗地理解信息增益?
通俗来说,一句话、一段视频、一本书统统都可以称为信息。有的信息很干,我们就说它的“信息增益”大,而有的很水,那么就是“信息增益”小。1 选择朋友举个例子吧,比如因为工作原因,我新结识了一位小伙伴,现在想判断他是否值得交往,也就是想做一个“选择朋友”的决策。我择友的标准是“好人”,但是好坏不会写在人的脑门上,只能通过了解更多的信息来判断。信息知道的越多自然判断越准确。当然,有的信息“信息增益”低,对“选择朋友”这个决策帮助小。比如抽烟、喝酒这个信息对“选择朋友”帮助就不大,好人、坏人都抽烟喝酒原创 2020-05-22 15:21:51 · 1859 阅读 · 0 评论 -
如何通俗地理解熵?
熵,是一个热力学的概念。但在历史的发展中,造就了它非常丰富的内涵,进入了很多学科的视野。本文会在数理层面对它进行一个解读,厘清它在逻辑上到底是什么。1 混乱的熵很多科普文章中,都提到熵是用来度量混乱的。比如下面这幅动图,单词“Entropy”(熵的英文)可见的时候,熵最小,这个时候最有秩序;而被打乱的时候,熵开始增大,直到最后一片混乱,熵变成最大:熵之所以很重要,是因为它总结了宇宙...原创 2019-10-08 16:20:53 · 10050 阅读 · 0 评论 -
如何理解几何分布与指数分布的无记忆性?
在经济学上,有一个概念是沉没成本,大概指的是已经付出的、且不可收回的成本。针对这个概念有一个常见的说法:这句话的意思是,既然沉没成本不可收回,那么在做选择的时候就不应该考虑它。举一个简单的例子,买票去看电影,放映10分钟你就知道这是一部烂片,那么有两个选项(图片出自沉没成本谬误):此时这张电影票已经消费了,没有办法收回,购买电影票的钱就是沉没成本。这个时候如果想离开电影院就直接离开...原创 2019-09-29 11:45:01 · 30187 阅读 · 7 评论 -
概率论发展的转折点:贝特朗悖论
和所有的数学分支类似,概率论的也是经历了从直觉到严格的过程。其中的一个转折点就是贝特朗悖论。1 古典派古典派也就是高中时候学的概率论。它的核心哲学思想是:不充分理由原则。1.1 不充分理由原则雅各布·伯努利(1654-1705):提出,如果因为无知,使得我们没有办法判断哪一个结果会比另外一个结果更容易出现,那么应该给予它们相同的概率。比如: 硬币:由于不清楚硬币哪一面...原创 2019-07-31 15:59:51 · 5569 阅读 · 0 评论 -
如何通俗地理解协方差和相关系数?
1 正相关与负相关1.1 相关性事物之间可能会有关系,这可以通过数据看出。比如要买房的人越多(下图的城镇化率可以简单理解为进城买房的人数),房价就越高,两者的关系称为正相关 :城镇化有另外一个反作用,降低出生率。城镇化和出生率之间的关系就是负相关 ,也就是说城镇化率越高、出生率会越低,所以说,“城镇化是最好的避孕药”:1.2 股票组合在现实生活中了解相关性是很有用处...原创 2019-06-25 10:13:03 · 6369 阅读 · 5 评论 -
如何理解指数分布?
1 泊松分布指数分布和泊松分布息息相关,所以先简单回忆下之前介绍过的泊松分布。公司楼下有家馒头店,每天早上六点到十点营业:老板统计了一周每日卖出的馒头(为了方便计算和讲解,缩小了数据),想从中找到一些规律:从中可以得到最简单的规律,均值:这个规律显然不够好,如果把营业时间抽象为一根线段,把这段时间用来表示:然后把卖出的馒头数画在这根线段上(节约篇幅,只画出周一...原创 2019-05-06 10:34:30 · 86502 阅读 · 15 评论 -
如何通俗理解泊松分布?
1 甜在心馒头店公司楼下有家馒头店:每天早上六点到十点营业,生意挺好,就是发愁一个事情,应该准备多少个馒头才能既不浪费又能充分供应?老板统计了一周每日卖出的馒头(为了方便计算和讲解,缩小了数据):均值为:按道理讲均值是不错的选择(参见如何理解最小二乘法?),但是如果每天准备5个馒头的话,从统计表来看,至少有两天不够卖,的时间不够卖:你“甜在心馒头店”又不是...原创 2019-04-12 14:48:40 · 453192 阅读 · 148 评论 -
什么是概率?
1 争论概率论需要回答的第一个问题就是,什么是概率?刚接触这门学科的同学可能觉得难以置信,这个问题仍然存在着广泛的争论:而且这个问题更像是一个哲学问题,而不是数学问题,确实也有不少哲学家参与讨论。对于概率的定义有几个主流的派别: 频率派 古典派 主观派 了解这些派别对于理解概率论很有帮助,下面来简单介绍一下。2 频率派首先来了解下频率派,频...原创 2019-03-12 10:54:48 · 4744 阅读 · 0 评论 -
概率论的起源
继《线性代数》和《单变量微积分》后,“马同学图解”系列又迎来新的成员 ---- 《概率论与数理统计》,覆盖浙江大学《概率与数理统计》前八章(考研范围),下面是本课程的第一篇文章,欢迎大家试读和购买(微信公众号:马同学高等数学,菜单“图解”中购买)。1 随机现象在生活中有些现象是注定的,比如往空中扔一个石头必然会落回地面,这叫作确定性现象 。也有不确定的现象,大家都见过骰子吧,下面是常...原创 2019-03-05 11:53:18 · 3022 阅读 · 0 评论 -
如何理解无偏估计量?
现实中常常有这样的问题,比如,想知道全体女性的身高均值 ,但是没有办法把每个女性都进行测量,只有抽样一些女性来估计全体女性的身高:那么根据抽样数据怎么进行推断?什么样的推断方法可以称为“好”?1 无偏性比如说我们采样到的女性身高分别为:那么:是对 不错的一个估计,为什么?因为它是无偏估计。首先,真正的全体女性的身高均值 ,我们是不知道,只有上帝才知道,在图中就画...原创 2018-09-15 16:49:04 · 52950 阅读 · 6 评论 -
如何理解主元分析(PCA)?
主元分析也就是PCA,主要用于数据降维。1 什么是降维?比如说有如下的房价数据:这种一维数据可以直接放在实数轴上:不过数据还需要处理下,假设房价样本用 表示,那么均值为:然后以均值 为原点:以 为原点的意思是,以 为0,那么上述表格的数字就需要修改下:这个过程称为“中心化”。“中心化”处理的原因是,这些数字后继会参与统计运算,比如求样本方差,中间就包...原创 2018-08-31 12:14:03 · 19332 阅读 · 4 评论 -
如何理解拉格朗日乘子法和KKT条件?
之前简单介绍了拉格朗日乘子法的基本思路:如何理解拉格朗日乘子法?本文会继续介绍拉格朗日乘子法的细节,以及对其进行适当的推广(也就是所谓的KKT条件)。1 无约束下的极值1.1 直观根据梯度的意义(参看如何理解梯度)可知,在函数 的极值点梯度为0:1.2 代数要求( 的意思是求极小值):只需解如下方程:2 单等式约束下的极值关于这一节,更详细的请参看:...原创 2018-08-18 19:13:39 · 5206 阅读 · 6 评论 -
为什么正态分布如此常见?
自然界中存在大量的正态分布,比如女性的身高:图片出自这里。正态分布的英文名为:Normal Distribution,台湾翻译为常态分布,可见一斑。可是为什么这么常见呢?每个人都相信它(正态分布):实验工作者认为它是一个数学定理,数学研究者认为他是一个经验公式。----加布里埃尔·李普曼1 高尔顿钉板弗朗西斯·高尔顿爵士(1822-1911),查尔斯·达尔文的表弟...原创 2018-08-01 11:40:34 · 30143 阅读 · 5 评论 -
如何理解最小二乘法?
最小平方法是十九世纪统计学的主题曲。 从许多方面来看, 它之于统计学就相当于十八世纪的微积分之于数学。----乔治·斯蒂格勒的《The History of Statistics》1 日用而不知来看一个生活中的例子。比如说,有五把尺子:用它们来分别测量一线段的长度,得到的数值分别为(颜色指不同的尺子):之所以出现不同的值可能因为: 不同厂家的尺子的生产精度不同 ...原创 2018-07-20 10:14:09 · 251134 阅读 · 183 评论 -
如何通俗理解贝叶斯推断与beta分布?
有一枚硬币(不知道它是否公平),假如抛了三次,三次都是“花”:能够说明它两面都是“花”吗?1 贝叶斯推断按照传统的算法,抛了三次得到三次“花”,那么“花”的概率应该是:但是抛三次实在太少了,完全有可能是运气问题。我们应该怎么办?托马斯·贝叶斯(1702-1761),18世纪英国数学家,1742年成为英国皇家学会会员。贝叶斯认为在实验之前,应根据不同的情况对硬...原创 2018-07-19 14:32:45 · 9873 阅读 · 1 评论