内接多边形的极限是圆吗

圆的面积(下)--内接正多边形的极限是圆吗


1 问题

上一个视频中,我们根据内接多边形不断靠近圆的思想,推出了无穷边形的面积为\pi r^2 ,继而得到了圆的面积为\pi r^2

但是,这里存在一个逻辑漏洞,内接正五边形不是圆、内接正六边形不是圆,内接正七、正八边形都不是圆。既然之前的多边形都不是圆,那么最终得到的无穷多边形的面积真的是圆的面积吗?本视频就来回答这个问题

 2 思路

先说思路,首先回忆一下圆的定义。根据欧几里得的《几何原本》定义,圆是到定点的距离等于定长的点的集合

 如果,内接多边形增加到无穷多边时,多边形上的每个点到圆心的距离都相等,那么就能说明该无穷多边形就是圆。

 那无穷多边形是这样的吗?

3 直观

无穷多边形咱不太清楚,但是对于五边形而言,边上的点到圆心的距离并不相等。其中,距离圆心最远的点,是顶点。距离最近的点是,过原点向底边所做垂线得到的垂足。

如果最长距离与最短距离相等,那么多边形上每个点到圆心的距离就都相等了。而随着边数的增加,我们可以看到,这两者的距离确实是在靠近

 最终会不会相等呢?下面我们来证明一下

4 验证

还是画出内接正五边形,连接圆心和顶点得到最长的距离,假设其长度为r ,过圆心向其中一条边作垂线得到最短的距离。容易知道由二者产生的夹角为\frac{\pi}{n} (这里为五边形,n 就等于5)。根据三角函数的知识,很容易得到最短的距离r\cos(\pi/n)

因为当n 趋于无穷时,\cos(\pi/n) 的极限为1,所以最短距离的极限就为r 。

\lim_{n\to\infty}r\cos(\pi/n)=r

这就意味着最长的距离、最短的距离在边数为无穷时会相等。所以内接无穷边多边形就是圆。那么根据内接无穷边多边形的面积为\pi r^2 ,就可以推出圆的面积为\pi r^2


马同学马同学提供线性代数,微积分,概率论与数理统计,机器学习等知识讲解https://www.matongxue.com/madocs/2153/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

马同学图解数学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值