题意:有n个点,m个边,求最小生成树并且再求最小生成树每个点的距离的数学期望
思路:最小生成树没什么好说的,kruskal算法,数学期望就有点麻烦了,需要dfs遍历
每个点,算出每条边出现的次数再乘以边的长度,求出总和后再除以不同的点队,就是
n*(n-1)/2。
思路:最小生成树没什么好说的,kruskal算法,数学期望就有点麻烦了,需要dfs遍历
每个点,算出每条边出现的次数再乘以边的长度,求出总和后再除以不同的点队,就是
n*(n-1)/2。
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;
struct node
{
int u,v,len;
}a[1000005];
int vis[100005],per[100005];
vector<pair<int,int> >V[100005];
int n,m;
double ans;
bool cmp(node c,node d)
{
return c.len<d.len;
}
void clear()
{
for(int i=0;i<=n;i++)
{
per[i]=i;
vis[i]=0;
V[i].clear();
}
ans=0;
}
int find(int x)
{
if(x!=per[x])
per[x]=find(per[x]);
return per[x];
}
int link(int x,int y)
{
int u=find(x);
int v=find(y);
if(u!=v)
{
per[u]=v;
return 1;
}
return 0;
}
void kruskal()
{
int i,x,y;
long long sum=0;
int flag=1;
for(i=0;i<m;i++)
{
x=a[i].u;
y=a[i].v;
if(link(x,y))
{
sum+=a[i].len;
V[x].push_back(make_pair(y,a[i].len));//记录最小生成树
V[y].push_back(make_pair(x,a[i].len));
flag++;
if(flag>=n)
break;
}
}
printf("%lld ",sum);
}
int dfs(int u)
{
int k,t,i;
k=t=0;
vis[u]=1;
for(i=0;i<V[u].size();i++)
{
if(!vis[V[u][i].first])
{
k=dfs(V[u][i].first);
ans+=(1.0*k*(n-k)*V[u][i].second);//这个公式建议自己画图推理,就是该边出现的次数
t+=k;
}
}
return t+1;
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
int i;
scanf("%d%d",&n,&m);
clear();
for(i=0;i<m;i++)
scanf("%d%d%d",&a[i].u,&a[i].v,&a[i].len);
sort(a,a+m,cmp);
kruskal();
dfs(1);
double temp=1.0*n*(n-1)/2;//不同的一对点的数量
printf("%.2lf\n",ans/temp);
}
}