题意:给定一棵树,选择尽量少的节点,使得每个没有选中的节点至少和一个已选节点相邻。
思路:假设这个树以0为根节点,设d[i][0]为截取第i个节点为根节点的树(i的父亲及以上不包括)且i不被选择时的答案, d[i][1]为i被选择时的答案,不难发现d[i][1]+=min(d[son][0],d[son][1]+1),d[i][0]+=d[son][1],答案是min(d[i][0],d[i][1])
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
int n;
int d[1505][2];
vector<int>G[1501];
int dfs(int u,int fa)
{
int i,j,k,v;
d[u][1]=1;
d[u][0]=0;
for(i=0;i<G[u].size();i++)
{
v=G[u][i];
if(v==fa)
continue;
dfs(v,u);
d[u][1]+=min(d[v][1],d[v][0]);
d[u][0]+=d[v][1];
}
}
int main()
{
while(~scanf("%d",&n))
{
int i,j,k,m,t;
for(i=0;i<n;i++)
G[i].clear();
for(i=0;i<n;i++)
{
scanf("%d",&k);
scanf(":(%d)",&m);
for(j=0;j<m;j++)
{
scanf("%d",&t);
G[k].push_back(t) ;
G[t].push_back(k);
}
}
dfs(0,-1);
printf("%d\n",min(d[0][0],d[0][1]));
}
}