题意:给一个无向带权图,并回答若干次问题,每次询问 s 到 t 的最小瓶颈路(就是找到一条从 s 到 t 的路,使得途径边权的最大值最小)
思路:n最大为50000,如果用暴力在最小生成树上求解显然超时,把最小生成树变成一颗有跟树,设maxcost[ i ][ j ]为节点i和它的2^j次方级祖先之间的路径上的最大权值,anc[ i ][ j ]为节点 i 的第2^j次方级祖先编号,可以用RMQ算法求出maxcost数组,然后每次查询注意下 s 和 t 的公共前缀就行了,复杂度就是RMQ算法的复杂度。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
const int maxn=5e4+10;
const int inf=1e9;
struct node
{
int u,v,dist;
}a[2*maxn];
vector<int>G[maxn],dis[maxn];
int cost[maxn],fa[maxn],L[maxn],par[maxn];
int anc[maxn][20],maxcost[maxn][20];
int n,m;
bool cmp(node c,node d)
{
return c.dist<d.dist;
}
void init()
{
for(int i=0;i<=n;i++)
{
par[i]=i;
G[i].clear();
dis[i].clear();
}
}
int find(int x)
{
if(par[x]!=x)
par[x]=find(par[x]);
return par[x];
}
void kruskal()
{
int cnt=0;
for(int i=0;i<m;i++)
{
int u=find(a[i].u);
int v=find(a[i].v);
if(u!=v)
{
par[u]=v;
cnt++;
G[a[i].u].push_back(a[i].v);
G[a[i].v].push_back(a[i].u);
dis[a[i].u].push_back(a[i].dist);
dis[a[i].v].push_back(a[i].dist);
}
if(cnt==n-1)
break;
}
}
void dfs(int u,int father,int dist,int deep)
{
fa[u]=father;
cost[u]=dist;
L[u]=deep;
for(int i=0;i<G[u].size();i++)
if(G[u][i]!=father)
dfs(G[u][i],u,dis[u][i],deep+1);
}
void pre()
{
for(int i=1;i<=n;i++)
{
anc[i][0]=fa[i];
maxcost[i][0]=cost[i];
for(int j=1;(1<<j)<n;j++)
anc[i][j]=-1;
}
for(int j=1;(1<<j)<n;j++)
for(int i=1;i<=n;i++)
if(anc[i][j-1]!=-1)
{
int t=anc[i][j-1];
anc[i][j]=anc[t][j-1];
maxcost[i][j]=max(maxcost[i][j-1],maxcost[t][j-1]);
}
}
int query(int p,int q)
{
int tmp,log,i;
if(L[p]<L[q])
swap(p,q);
for(log=1;(1<<log)<=L[p];log++);log--;
int ans=-inf;
for(i=log;i>=0;i--)
if(L[p]-(1<<i)>=L[q])
{
ans=max(ans,maxcost[p][i]);
p=anc[p][i];
}
if(p==q)
return ans;
for(i=log;i>=0;i--)
if(anc[p][i]!=-1&&anc[p][i]!=anc[q][i])
{
ans=max(ans,maxcost[p][i]);p=anc[p][i];
ans=max(ans,maxcost[q][i]);q=anc[q][i];
}
ans=max(ans,cost[p]);
ans=max(ans,cost[q]);
return ans;
}
int main()
{
int kase=0;
while(~scanf("%d%d",&n,&m))
{
init();
for(int i=0;i<m;i++)
scanf("%d%d%d",&a[i].u,&a[i].v,&a[i].dist);
if(kase++)
printf("\n");
sort(a,a+m,cmp);
kruskal();
dfs(1,-1,0,0);
pre();
int q,s,t;
scanf("%d",&q);
while(q--)
{
scanf("%d%d",&s,&t);
printf("%d\n",query(s,t));
}
}
}