UVA 11354 Bond 最小生成树 LCA

UVA 11354

题意:给一个无向带权图,并回答若干次问题,每次询问 s 到 t 的最小瓶颈路(就是找到一条从 s 到 t 的路,使得途径边权的最大值最小)

思路:n最大为50000,如果用暴力在最小生成树上求解显然超时,把最小生成树变成一颗有跟树,设maxcost[ i ][ j ]为节点i和它的2^j次方级祖先之间的路径上的最大权值,anc[ i ][ j ]为节点 i 的第2^j次方级祖先编号,可以用RMQ算法求出maxcost数组,然后每次查询注意下 s 和 t 的公共前缀就行了,复杂度就是RMQ算法的复杂度。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
const int maxn=5e4+10;
const int inf=1e9;
struct node
{
	int u,v,dist;
}a[2*maxn];
vector<int>G[maxn],dis[maxn];
int cost[maxn],fa[maxn],L[maxn],par[maxn];
int anc[maxn][20],maxcost[maxn][20];
int n,m;
bool cmp(node c,node d)
{
	return c.dist<d.dist;
}
void init()
{
	for(int i=0;i<=n;i++)
	{
		par[i]=i;
		G[i].clear();
		dis[i].clear();
	}
}
int find(int x)
{
	if(par[x]!=x)
	par[x]=find(par[x]);
	return par[x];
}
void kruskal()
{
	int cnt=0;
	for(int i=0;i<m;i++)
	{
		int u=find(a[i].u);
		int v=find(a[i].v);
		if(u!=v)
		{
			par[u]=v;
			cnt++;
			G[a[i].u].push_back(a[i].v);
			G[a[i].v].push_back(a[i].u);
			dis[a[i].u].push_back(a[i].dist);
			dis[a[i].v].push_back(a[i].dist);
		}
		if(cnt==n-1)
		break;
	}
}
void dfs(int u,int father,int dist,int deep)
{
	fa[u]=father;
	cost[u]=dist;
	L[u]=deep;
	for(int i=0;i<G[u].size();i++)
	if(G[u][i]!=father)
	dfs(G[u][i],u,dis[u][i],deep+1);
}
void pre()
{
	for(int i=1;i<=n;i++)
	{
		anc[i][0]=fa[i];
		maxcost[i][0]=cost[i];
		for(int j=1;(1<<j)<n;j++)
		anc[i][j]=-1;
	}
	for(int j=1;(1<<j)<n;j++)
	for(int i=1;i<=n;i++)
	if(anc[i][j-1]!=-1)
	{
		int t=anc[i][j-1];
		anc[i][j]=anc[t][j-1];
		maxcost[i][j]=max(maxcost[i][j-1],maxcost[t][j-1]);
	}
}
int query(int p,int q)
{
	int tmp,log,i;
	if(L[p]<L[q])
	swap(p,q);
	for(log=1;(1<<log)<=L[p];log++);log--;
	int ans=-inf;
	for(i=log;i>=0;i--)
	if(L[p]-(1<<i)>=L[q])
	{
		ans=max(ans,maxcost[p][i]);
		p=anc[p][i];
	}
	if(p==q)
	return ans;
	for(i=log;i>=0;i--)
	if(anc[p][i]!=-1&&anc[p][i]!=anc[q][i])
	{
		ans=max(ans,maxcost[p][i]);p=anc[p][i];
		ans=max(ans,maxcost[q][i]);q=anc[q][i];
	}
	ans=max(ans,cost[p]);
	ans=max(ans,cost[q]);
	return ans;
}
int main() 
{
	int kase=0;
	while(~scanf("%d%d",&n,&m))
	{
		init();
		for(int i=0;i<m;i++)
		scanf("%d%d%d",&a[i].u,&a[i].v,&a[i].dist);
		if(kase++)
		printf("\n");
		sort(a,a+m,cmp);
		kruskal();
		dfs(1,-1,0,0);
		pre();
		int q,s,t;
		scanf("%d",&q);
		while(q--)
		{
			scanf("%d%d",&s,&t);
			printf("%d\n",query(s,t));
		}
	}
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

长沙橘子猫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值