思路:从0开始bfs搜索就好了,直到模数等于0且数字和等于s就好了。
#include<cstdio>
#include<iostream>
#include<cstring>
#include<string>
#include<queue>
using namespace std;
struct node
{
char s[605];
int mod,sum,len;
node()
{
mod=sum=0;
len=-1;
memset(s,0,sizeof(s));
}
};
int d[550][5050];
int main()
{
int s,sum;
cin>>s>>sum;
queue<node>q;
for(int i=0;i<=500;i++)
memset(d[i],0,sizeof(d[i]));
node tmp;
q.push(tmp);
while(!q.empty())
{
node e=q.front();q.pop();
for(int i=0;i<10;i++)
{
node ne=e;
ne.len++;
ne.s[ne.len]='0'+i;
ne.mod=(ne.mod*10+i)%s;
ne.sum+=i;
if(d[ne.mod][ne.sum]||ne.sum>sum)continue;
d[ne.mod][ne.sum]=1;
if(ne.mod==0&&ne.sum==sum)
{
puts(ne.s);
return 0;
}
q.push(ne);
}
}
cout<<-1;
}
题意:一个公司每天需要k个cpu,要持续n天,有m个租售cpu方案,每次方案给定一个租售日期区间和单价p以及租售的cpu数量c。你要选择若干种方案,使得满足公司需求且花费最小,求最小花费。
思路:线段树区间覆盖,每个点初始值为0,表示这一天已租的cpu数量为0,将方案数按照单价从小到大排序,然后线段树区间覆盖,直到线段树区间的所有值都为k即可。
#include<cstdio>
#include<algorithm>
using namespace std;
typedef long long ll;
const int maxn=1e6+10;
int Min[maxn*8],Max[maxn*8],add[maxn*8],n,k,m,p;
ll ans=0;
struct node
{
int l,r,c,p;
bool operator<(const node& t)
{
return p<t.p;
}
}a[maxn];
void pushdown(int o,int ls,int rs)
{
add[ls]+=add[o],add[rs]+=add[o];
Min[ls]+=add[o],Min[rs]+=add[o];
Max[ls]+=add[o],Max[rs]+=add[o];
add[o]=0;
}
void pushup(int o,int ls,int rs)
{
Min[o]=min(Min[ls],Min[rs])+add[o];
Max[o]=max(Max[ls],Max[rs])+add[o];
}
void up(int l,int r,int o,int ql,int qr)
{
int mid=(l+r)/2,ls=o*2,rs=o*2+1;
if(Min[o]==m)return;
if(l>=ql&&r<=qr)
{
if(Max[o]==Min[o])
{
if(a[p].c+Min[o]<=m)
{
add[o]+=a[p].c;
ll tmp=1ll*(r-l+1)*a[p].c*a[p].p;
ans+=tmp;
pushup(o,ls,rs);
}
else
{
int t=m-Min[o];
add[o]+=t;
ll tmp=1ll*(r-l+1)*a[p].p*t;
ans+=tmp;
pushup(o,ls,rs);
}
return;
}
else if(Max[o]+a[p].c<=m)
{
add[o]+=a[p].c;
ans+=1ll*(r-l+1)*a[p].c*a[p].p;
pushup(o,ls,rs);
return;
}
else{
if(add[o])pushdown(o,ls,rs);
up(l,mid,ls,ql,qr);
up(mid+1,r,rs,ql,qr);
pushup(o,ls,rs);
return;
}
}
if(add[o])pushdown(o,ls,rs);
if(ql<=mid)up(l,mid,ls,ql,qr);
if(qr>mid)up(mid+1,r,rs,ql,qr);
pushup(o,ls,rs);
}
int main()
{
scanf("%d%d%d",&n,&m,&k);
for(int i=1;i<=k;i++)
scanf("%d%d%d%d",&a[i].l,&a[i].r,&a[i].c,&a[i].p);
sort(a+1,a+1+k);
for(int i=1;i<=k;i++)
{
p=i;
up(1,n,1,a[i].l,a[i].r);
if(Min[1]==m)break;
}
printf("%I64d",ans);
}
题意:在一个长度最多为100的区间内,你有m个英雄,每个点都有一个hp,如果hp是正的,英雄路过这个点其血量就加hp,如果为负的英雄路过那英雄的血量就减去hp(英雄的hp为负数就阵亡),每个点的hp如果被用了一次,那么就一直为0,求一个点,所有英雄都能走到这个点。
思路:长度最大为100,当然暴力枚举每个点,然后再bfs暴力搜素即可,n^4复杂度过之。
#include<cstdio>
#include<cstring>
#include<queue>
#include<iostream>
#include<algorithm>
using namespace std;
struct node
{
int x,h,id;
node(int a,int b,int c)
{
x=a,h=b,id=c;
}
};
int a[105],b[105],x[105],h[105],ans[105],vis[105][105];
queue<node>q;
int main()
{
int n,m;
cin>>n>>m;
for(int i=1;i<=m;i++)
cin>>x[i]>>h[i];
for(int i=1;i<=n;i++)
cin>>a[i],b[i]=a[i];
for(int pos=1;pos<=n;pos++)
{
int cnt=0;
for(int i=1;i<=m;i++)
{
q.push(node(x[i],h[i],i));
memset(vis[i],0,sizeof(vis[i]));
}
for(int i=1;i<=n;i++)a[i]=b[i];
while(!q.empty())
{
node e=q.front();q.pop();
//if(pos==3)
//printf("id=%d x=%d h=%d\n",e.id,e.x,e.h);
if(vis[e.id][e.x]==n)continue;
vis[e.id][e.x]++;
if(e.x==pos)
{
ans[++cnt]=e.id;
continue;
}
int xx=e.x,hh=e.h;
while(pos>e.x&&e.h+a[e.x+1]>=0)++e.x,e.h+=a[e.x];
while(pos<e.x&&e.h+a[e.x-1]>=0)--e.x,e.h+=a[e.x];
int t1=min(xx,pos),t2=max(xx,pos);
if(e.x==pos)
for(int k=t1;k<=t2;k++)
a[k]=0;
else
e.x=xx,e.h=hh;
q.push(e);
}
if(cnt==m)
{
printf("%d\n",pos);
for(int i=1;i<=cnt;i++)cout<<ans[i]<<" ";
return 0;
}
//printf("pos=%d cnt=%d\n",pos,cnt);
//for(int i=1;i<=cnt;i++)cout<<ans[i]<<" ";
//puts("");
}
puts("-1");
}
I. Privatization of Roads in Berland
题意:给你一张图,要求给边涂色,要求同一个颜色最多用两次,且每个点连接的边的不同的颜色至多为k,求染色方案。
思路:设du[ i ]为该点连接的边数,如果du[ i ]<=k,随便染色不影响,如果du[ i ]>k,那么必定有2*(du[ i ]-k)条边,其颜色是用两次的,那么我可以从源点连接点 i ,流量为2*(du[ i ]-k),代表有这么多的边是要用重复颜色的,每条边看做一个点,并且连接到汇点,流量为1,代表这边只能用一次,然后题目给的所有边流量都为1,然后求最大流即可。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<queue>
#include<map>
using namespace std;
const int maxn=1300;
const int inf=1e8;
struct Edge
{
int from,to,cap,flow,id;
};
int k,cnt,du[maxn];
map<int,int>mp;
map<int,int>::iterator it;
struct Dinic
{
int n,m,s,t;
vector<Edge>edges;
vector<int>G[maxn];
bool vis[maxn];
int d[maxn];
int cur[maxn];
void init(int n)
{
this->n=n;
for(int i=0;i<n;i++)G[i].clear();
edges.clear();
}
void AddEdge(int from,int to,int cap,int id)
{
edges.push_back((Edge){from,to,cap,0,id});
edges.push_back((Edge){to,from,0,0,0});
m=edges.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
}
void DelEdge(int from)
{
G[from].clear();
}
void clear(int t,int k)
{
for(int i=0;i<edges.size();i++)
{
edges[i].flow=0;
if(edges[i].to==t)
edges[i].cap=k;
}
}
bool bfs()
{
memset(vis,0,sizeof(vis));
queue<int>Q;
Q.push(s);
d[s]=0;
vis[s]=1;
while(!Q.empty())
{
int x=Q.front();Q.pop();
for(int i=0;i<G[x].size();i++)
{
Edge& e=edges[G[x][i]];
if(!vis[e.to]&&e.cap>e.flow)
{
vis[e.to]=1;
d[e.to]=d[x]+1;
Q.push(e.to);
}
}
}
return vis[t];
}
int dfs(int x,int a)
{
if(x==t||a==0)return a;
int flow=0,f;
for(int& i=cur[x];i<G[x].size();i++)
{
Edge& e=edges[G[x][i]];
if(d[x]+1==d[e.to]&&(f=dfs(e.to,min(a,e.cap-e.flow)))>0)
{
e.flow+=f;
edges[G[x][i]^1].flow-=f;
flow+=f;
a-=f;
if(a==0)break;
}
}
return flow;
}
int Maxflow(int s,int t)
{
this->s=s;this->t=t;
int flow=0;
while(bfs())
{
memset(cur,0,sizeof(cur));
flow+=dfs(s,inf);
}
return flow;
}
void print(int m)
{
int ans[m+1]={0},tot=0;
for(int i=1;i<=cnt;i++)
{
if(du[i]<=k)continue;
int sum=0;
for(int j=0;j<G[i].size();j++)
{
Edge e=edges[G[i][j]];
if(e.id==0||e.flow==0||ans[e.id])continue;
sum++;
if(sum%2)ans[e.id]=++tot;
else ans[e.id]=tot;
}
}
for(int i=1;i<=cnt;i++)
{
for(int j=0;j<G[i].size();j++)
{
Edge e=edges[G[i][j]];
if(e.id==0||e.flow!=0||ans[e.id])continue;
ans[e.id]=++tot;
}
}
for(int i=1;i<=m;i++)printf("%d%c",ans[i],i==m?'\n':' ');
}
}solve;
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
mp.clear();cnt=0;
memset(du,0,sizeof(du));
int n,m,u,v,s,t,sum=0;
scanf("%d%d%d",&n,&m,&k);
s=n+m+1,t=s+1;
solve.init(t+1);
for(int i=1;i<=m;i++)
{
scanf("%d%d",&u,&v);
if(!mp[u])mp[u]=++cnt;
if(!mp[v])mp[v]=++cnt;
du[mp[u]]++,du[mp[v]]++;
++cnt;
solve.AddEdge(mp[u],cnt,1,i);
solve.AddEdge(mp[v],cnt,1,i);
solve.AddEdge(cnt,t,1,0);
}
for(it=mp.begin();it!=mp.end();it++)
{
u=it->second;
if(du[u]>k)
solve.AddEdge(s,u,2*(du[u]-k),0),sum+=2*(du[u]-k);
}
if(solve.Maxflow(s,t)!=sum)
for(int i=1;i<=m;i++)printf("0%c",i==m?'\n':' ');
else solve.print(m);
}
}