Codeforces Round #526 (Div. 2) CDE题解

由于这是猝死场,所以没打,第二天刷了刷发现挺简单的。(不对,是第一天...)

C. The Fair Nut and String

题意:让你根据已给字符串的下标构造一些数列,要求:数列元素必须由已给串的字符 'a' 的下标严格递增构造,且数列两个相邻元素对应串的两个下标中间必须要有 'b' ,求有多少种构造方法。

思路:把字符串换成这样aabaaabaabaa(有多个b就把它缩为一个),相当于有若干个b把a分成了若干块,这样转变成数学问题,对于每个块的大小ai,我都有ai+1种选法,答案乘以ai+1即可,算完之后ans-1就是真正的答案,为什么要减一,因为每块都可以不选,那么有一种非法情况是所有块都不选,所以要减一。

#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
const int maxn=1e5+10,mod=1e9+7;
typedef long long ll;
char s[maxn];
int main()
{
	scanf("%s",s);
	int n=strlen(s);
	ll ans=1,res=1;
	for(int i=0;i<n;i++)
	if(s[i]=='a')
	res++;
	else if(s[i]=='b')
	ans=ans*res%mod,res=1;
	ans=ans*res%mod;
	ans=(ans-1+mod)%mod;
	cout<<ans;
}

D. The Fair Nut and the Best Path

题意:每个点有正权值ai,每条边有负权值wi,你可以随意选择一条路径,使得这条路径的总权值最大,要求每个点每条边至多都只能走一次。

思路:简单树形dp,设d[ i ]为 i 为中间点的路径的最大权值和,f[ i ]为 i 为起点的路径的最大权值和,状态转移很简单,对于点u,从所有儿子中找到一个最大的f[ son1 ],次大的f[ son2 ],d[ u ]=a[ u ]+f[ son1 ]+dist( u,son1 )+f[ son2 ]+dist( u,son2 ),f[ u ]=a[ u ]+f[ son1 ]+dist( u,son1 )即可。

#include<cstdio>
#include<vector>
#include<algorithm>
using namespace std;
typedef long long ll;
const int maxn=3e5+10;
vector<int>G[maxn],dis[maxn];
ll d[maxn],f[maxn],a[maxn],ans=0;
void dfs(int u,int fa)
{
	d[u]=f[u]=a[u];
	ll mx=0,mx2=0;
	for(int i=0;i<G[u].size();i++)
	{
		int v=G[u][i];
		if(v==fa)continue;
		dfs(v,u);
		if(f[v]-dis[u][i]>mx)
		mx2=mx,mx=f[v]-dis[u][i];
		else if(f[v]-dis[u][i]>mx2)
		mx2=f[v]-dis[u][i];
	}
	d[u]+=mx+mx2;
	f[u]+=mx; 
	ans=max(ans,d[u]);
	ans=max(ans,f[u]);
}
int main()
{
	int n,u,v,w;
	scanf("%d",&n);
	for(int i=1;i<=n;i++)
	scanf("%I64d",&a[i]);
	for(int i=1;i<n;i++)
	{
		scanf("%d%d%d",&u,&v,&w);
		G[u].push_back(v);
		G[v].push_back(u);
		dis[u].push_back(w);
		dis[v].push_back(w);
	}
	dfs(1,-1);
	printf("%I64d\n",ans);
}

E. The Fair Nut and Strings

题意:有k个长度为n且只由字符a,b构成的字符串,现在只给出最大的串 t 和最小的串 s ,剩下的串随你构造,求最多有多少种不同的串,是k个串中的前缀。

思路:看了别人ac的代码,发现细节挺多,从第一个字符开始遍历两个串,我先定义两个数a ,b,表示走到了当前的 s 串和 t 串所对应的数(abbaa看成二进制01100),如果当前b和a的差小于k,那么答案就加上他们的差即可,否则就加上k即可,这么一想n大的很,是不是要用大数?其实不是,答案最大也就是n*k,当b和a的差超过了k,也就没必要继续遍历下去了。

#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
string s,t;
ll n,k,a,b,ans;
int main()
{
	cin>>n>>k>>s>>t;
	for(int i=0;i<n;i++)
	{
		a*=2,b*=2;
		if(s[i]=='b')a++;
		if(t[i]=='b')b++;
		if(a==b)a=b=0;
		if(b-a+1>=k)
		{
			ans+=k*(n-i);
			break;
		}
		ans+=b-a+1;
	}
	cout<<ans;
}

F. Max Mex

待补

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

长沙橘子猫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值