由于这是猝死场,所以没打,第二天刷了刷发现挺简单的。(不对,是第一天...)
题意:让你根据已给字符串的下标构造一些数列,要求:数列元素必须由已给串的字符 'a' 的下标严格递增构造,且数列两个相邻元素对应串的两个下标中间必须要有 'b' ,求有多少种构造方法。
思路:把字符串换成这样aabaaabaabaa(有多个b就把它缩为一个),相当于有若干个b把a分成了若干块,这样转变成数学问题,对于每个块的大小ai,我都有ai+1种选法,答案乘以ai+1即可,算完之后ans-1就是真正的答案,为什么要减一,因为每块都可以不选,那么有一种非法情况是所有块都不选,所以要减一。
#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
const int maxn=1e5+10,mod=1e9+7;
typedef long long ll;
char s[maxn];
int main()
{
scanf("%s",s);
int n=strlen(s);
ll ans=1,res=1;
for(int i=0;i<n;i++)
if(s[i]=='a')
res++;
else if(s[i]=='b')
ans=ans*res%mod,res=1;
ans=ans*res%mod;
ans=(ans-1+mod)%mod;
cout<<ans;
}
D. The Fair Nut and the Best Path
题意:每个点有正权值ai,每条边有负权值wi,你可以随意选择一条路径,使得这条路径的总权值最大,要求每个点每条边至多都只能走一次。
思路:简单树形dp,设d[ i ]为 i 为中间点的路径的最大权值和,f[ i ]为 i 为起点的路径的最大权值和,状态转移很简单,对于点u,从所有儿子中找到一个最大的f[ son1 ],次大的f[ son2 ],d[ u ]=a[ u ]+f[ son1 ]+dist( u,son1 )+f[ son2 ]+dist( u,son2 ),f[ u ]=a[ u ]+f[ son1 ]+dist( u,son1 )即可。
#include<cstdio>
#include<vector>
#include<algorithm>
using namespace std;
typedef long long ll;
const int maxn=3e5+10;
vector<int>G[maxn],dis[maxn];
ll d[maxn],f[maxn],a[maxn],ans=0;
void dfs(int u,int fa)
{
d[u]=f[u]=a[u];
ll mx=0,mx2=0;
for(int i=0;i<G[u].size();i++)
{
int v=G[u][i];
if(v==fa)continue;
dfs(v,u);
if(f[v]-dis[u][i]>mx)
mx2=mx,mx=f[v]-dis[u][i];
else if(f[v]-dis[u][i]>mx2)
mx2=f[v]-dis[u][i];
}
d[u]+=mx+mx2;
f[u]+=mx;
ans=max(ans,d[u]);
ans=max(ans,f[u]);
}
int main()
{
int n,u,v,w;
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%I64d",&a[i]);
for(int i=1;i<n;i++)
{
scanf("%d%d%d",&u,&v,&w);
G[u].push_back(v);
G[v].push_back(u);
dis[u].push_back(w);
dis[v].push_back(w);
}
dfs(1,-1);
printf("%I64d\n",ans);
}
题意:有k个长度为n且只由字符a,b构成的字符串,现在只给出最大的串 t 和最小的串 s ,剩下的串随你构造,求最多有多少种不同的串,是k个串中的前缀。
思路:看了别人ac的代码,发现细节挺多,从第一个字符开始遍历两个串,我先定义两个数a ,b,表示走到了当前的 s 串和 t 串所对应的数(abbaa看成二进制01100),如果当前b和a的差小于k,那么答案就加上他们的差即可,否则就加上k即可,这么一想n大的很,是不是要用大数?其实不是,答案最大也就是n*k,当b和a的差超过了k,也就没必要继续遍历下去了。
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
string s,t;
ll n,k,a,b,ans;
int main()
{
cin>>n>>k>>s>>t;
for(int i=0;i<n;i++)
{
a*=2,b*=2;
if(s[i]=='b')a++;
if(t[i]=='b')b++;
if(a==b)a=b=0;
if(b-a+1>=k)
{
ans+=k*(n-i);
break;
}
ans+=b-a+1;
}
cout<<ans;
}
待补