2019年湘潭大学程序设计竞赛 EGH 题解

E.Watermelon

思路:设sum(x)为前x个数的前缀和,我们先找到最大值的位置p,然后我开始枚举轮次x,假设经过了x满轮到了第p-1个人,我们求出当前吃的最少的瓜为Min=x*(n-1)+x* ap+p-1,当前吃的最多的瓜是Max=x* sum(n)+sum(p-1),如果Min<=m<=Max,那么肯定就肯定输出YES了(想一想,为什么),如果不满足我们一直枚举x,直到Min>m结束。
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=1e6+10;
int a[maxn],n,m;
ll sum[maxn];
int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        int p=0,mx0=0;
        scanf("%d%d",&n,&m);
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&a[i]);
            sum[i]=sum[i-1]+a[i];
            if(a[i]>mx0)
                p=i,mx0=a[i];
        }
        int flag=0;
        ll x=0;
        while(1)
        {
            ll mn=x*(n-1)+x*mx0+p-1;
            ll mx=x*sum[n]+sum[p-1];
            if(mn>m)
                break;
            if(m>=mn&&m<=mx)
            {
                flag=1;
                break;
            }
            x++;
        }
        if(n==1)
            flag=1;
        if(flag)
            puts("YES");
        else
            puts("NO");
    }
}

G.Truthman or Fakeman

这题我用2-sat写了个假算法…看了别人AC代码补的
思路:我们把每个点u拆成u,u+n,u表示说真话,u+n表示说假话,首先 u v 1,那么u v要么同真,要么同假,我们用并查集分别连接 u,v 和 u+n,v+n,如果 u v 0,那么u v肯定一真一假,我们用并查集分别连接u,v+n 和 u+n,v,完成连接后,我们枚举每个点 i ,用并查集判断 i 和 i+n 是否联通,如果联通,肯定是无解,如果不联通,就看哪个联通块真话的人多,就选择哪个联通快。
#include<bits/stdc++.h>
using namespace std;
const int maxn=2e5+10;
int vis[maxn],p[maxn],sz[maxn],n;
char s[maxn];
int find(int x)
{
    if(p[x]!=x)
        p[x]=find(p[x]);
    return p[x];
}
bool join(int x,int y)
{
    x=find(x);
    y=find(y);
    if(x==y)
        return false;
    sz[y]+=sz[x];
    p[x]=y;
    return true;
}
bool ok()
{
    for(int i=1;i<=n;i++)
    {
        int x=find(i);
        int y=find(i+n);
        if(x==y)
            return false;
        if(!vis[x])
        {
            if(sz[x]>sz[y])
                vis[x]=1,vis[y]=-1;
            else
                vis[x]=-1,vis[y]=1;
        }
        if(vis[x]==1)
            s[i-1]='1';
        else
            s[i-1]='0';
    }
    s[n]=0;
    puts(s);
    return true;
}
int main()
{
    int T;
    cin>>T;
    while(T--)
    {
        int m,u,v,w;
        scanf("%d%d",&n,&m);
        for(int i=1;i<=2*n;i++)
            vis[i]=0,p[i]=i,sz[i]= i<=n;
        for(int i=1;i<=m;i++)
        {
            scanf("%d%d%d",&u,&v,&w);
            if(w)
            {
                join(u,v);
                join(u+n,v+n);
            }
            else
            {
                join(u,v+n);
                join(u+n,v);
            }
        }
        if(!ok())
            puts("-1");
    }
}

H.Chat

思路:设d[i][j]为前 i 天女神的生气度为 j 最小总上线时间,对于第 i+1 天,我们枚举这一天女神新增的生气度 p ,求出新增 p 需要最小的上线时间time ,我们枚举再生气度 j,显然转移方程:d[i+1][j+p]=min(d[i+1][j+p], d[i][j]+time)
#include<bits/stdc++.h>
using namespace std;
const int maxn=210;
int d[maxn][maxn],n,m,k,inf=1e8;
char s[maxn];
int q[201];
int gao(int N)
{
    if(!N)return 0;
    int h=0,t=1,ans=inf;
    for(int i=1;i<=m;i++)
    if(s[i]=='1')
    {
        q[++h]=i;
        if(h-t+1>N)
            t++;
        if(h-t+1==N)
        ans=min(ans,q[h]-q[t]+1);
    }
    return ans;
}
void update(int &x,int y)
{
    x=min(x,y);
}
int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d%d%d",&n,&m,&k);
        int ans=inf;
        for(int i=0;i<=n;i++)
            for(int j=0;j<=k;j++)
                d[i][j]=inf;
        d[0][0]=0;
        for(int cur=1;cur<=n;cur++)
        {
            scanf("%s",s+1);
            int N=0;
            for(int i=1;i<=m;i++)
                N+=s[i]-'0';
            for(int i=0;i<=N;i++)
            {
                if(N-i>k)continue;
                int tmp=gao(i);
                //printf("i=%d tmp=%d\n",i,tmp);
                for(int j=0;j+N-i<=k;j++)
                    update(d[cur][j+N-i],d[cur-1][j]+tmp);
            }
        }
        for(int i=0;i<=k;i++)
            update(ans,d[n][i]);
        printf("%d\n",ans);
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

长沙橘子猫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值