通过优锐课核心java学习笔记中,我们可以看到Java 中 double 在计算时精度丢失的问题,码了很多专业的相关知识, 分享给大家参考学习。
一、问题呈现
非常经典问题,其实不仅仅是 Java 语言,还是 JS 等语言的通病,即:
当我们在计算 0.1+0.2 时,惊讶的发现,结果竟然不是 0.3,而是:0.30000000000000004。
二、问题分析
问题很简单,是由于我们输入的十进制的 double 类型的数据在进行计算的时候,计算机会先将其转换为二进制数据,然后再进行相关的运算。
然而在十进制转二进制的过程中,有些十进制数是无法使用一个有限的二进制数来表达的,换言之就是转换的时候出现了精度的丢失问题,所以导致最后在运算的过程中,自然就出现了我们看到的一幕。
三、问题解决
Java 语言中最经典的便是使用 BigDecimal 来解决。
整体思路是先将 double 类型的数据转换成 BigDecimal 来进行运算,最后再转换成 double 类型的数据。
但是此处有一个坑,即在将 double 转 BigDecimal 的时候,是可以有三种方式去实现的,其中两种构造方式,还有一种静态方法方式:
// 方式一
public BigDecimal(double val) {
this(val,MathContext.UNLIMITED);
}
// 方式二
public BigDecimal(String val) {
this(val.toCharArray(), 0, val.length());
}
// 方式三(其实底层就是方式二)
public static BigDecimal valueOf(double val) {
// Reminder: a zero double returns ‘0.0’, so we cannot fastpath
// to use the constant ZERO. This might be important enough to
// justify a factory approach, a cache, or a few private
// constants, later.
return new BigDecimal(Double.toString(val));
}
从上面我们可以清晰地看出,其实 BigDecimal 是希望我们使用传入 string 类型的数据的构造方法。
所以解决起来就顺水推舟了,看如下 demo:
double d1 = 0.1, d2 = 0.2;
System.out.println(d1 + d2);
System.out.println(new BigDecimal(d1).add(new BigDecimal(d2)).doubleValue());
System.out.println(BigDecimal.valueOf(d1).add(BigDecimal.valueOf(d2)).doubleValue());
System.out.println(new BigDecimal(Double.toString(d1)).add(new BigDecimal(Double.toString(d2))).doubleValue());
贴出运行的结果:
0.30000000000000004
0.30000000000000004
0.3
0.3
小 Tip:
很多人会说 public BigDecimal(double val) 这个构造方法是 Java 的一个 bug,其实我并不认同,我觉得是传递的 double 类型的参数的问题,这个数据本身就存在精度的问题,所以导致了最终的计算问题。
换言之,其实使用计算机的二进制来表达十进制的小数,本身就是个伪命题。
四、double 转二进制
那么,为什么使用二进制无法精确表达一个 double 类型的数据呢?下面来手动画图婆剖析下换算的方法:
举个栗子:15.75 -> 1111.11
step1:拆分
将整数和小数部分拆分得:15 和 0.75
step2:计算整数部分
整数部分是 15,计算得 1111,见下图:
step3:计算小数部分
小数部分是 0.75,计算得 0.11,见下图:
step4:合并
将整数部分和小数部分拼接得到最终的结果:1111.11
再举个经典的栗子:0.1 -> 0.000110011001100110011001100…………
还是四步走:
step1:拆分
将整数部分和小数部分拆分得: 0 和 0.1
step2:计算整数部分
整数部分是 0 ,计算得: 0
step3:计算小数部分
小数部分是 0.1,计算得:0.0001100110011001100………….,计算过程见下图:
step4:合并
将整数部分和小数部分合并得到最终的结果:0.000110011001100110011001100…………
五、二进制转 double
同样举个栗子:1111.11 -> 15.75
还是分四步走:
step1:拆分
将整数和小数部分拆分得:1111 和 0.11
step2:计算整数部分
整数部分 1111 计算得 15,详细计算过程见下图:
step3:计算小数部分
小数部分 0.11 计算得 0.75,详细计算过程见下图
step4:合并
整数部分和小数部分合并得最终的结果:15.75
————————————————
版权声明:本文为CSDN博主「程序员plus」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/AD_plus/article/details/90694399