Catalan数(卡塔兰数)的证明

博客探讨了卡塔兰数的定义,即从(0,0)到(n,n)的路径计数问题,不越过直线y=x。通过数学分析,证明了C(2n,n)/(n+1)为正确答案,并提出了一种不常见但巧妙的证明方法,通过路径的转化来展示f(0)=f(2)=...=f(2n)。此外,还讨论了当路径与y=x斜率相等时的情况,并给出了相关的高精度计算问题HDU1023。" 121567537,11062165,STM32f103 OLED滚屏显示长字符实现,"['嵌入式开发', 'STM32', 'OLED显示屏', '驱动编程', '嵌入式硬件']
摘要由CSDN通过智能技术生成

定义:从(0,0)到(n,n),不越过(可以接触)直线y=x(即每一步的落脚点都满足y>=x),且每次只能往上或往右走。求方案数。

结果:C(2n,n)-C(2n,n-1)   (编程是可以实现小数据的)

n比较小时可以枚举,不过n可能会很大

证明方法:有很多种,自己上维基百科就能搜到(https://en.wikipedia.org/wiki/Catalan_number),这里给大家介绍一种不太常见的方法。

注意到答案为C(2n,n)/(n+1)

若不要求不越过y=x,答案为C(2n,n) (求法应该知道吧)

所以我们想到:定义p(l)为任意一条路径l在y=x下方所行走的路径的长度和。显然2|p(l)


图中p为4,(图直接从维基百科上复制的)

设满足p(l)=k的路径条数为f(k),则f(0)即为所求

我们证明:f(0)=f(2)=...=f(2n)

首先想到直接证。不过如果可以就求完了。

其次想到化归。我们证明任意一条满足p(l)=2k的路径l都可以化归为满足p(l')=2k+2的l'(2k-2同理)


如图,黑色箭头为调整箭头(将l划分为若干个箭头,第一个向右且恰好碰到y=x的箭头),记为B

剩下的部分,B前面的所有箭头记为A(红色部分),后面的记为C(绿色部分)

则路径l可记为A-

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值