keras实现EDSR中遇到的坑

本文记录了在使用keras实现超分辨率任务的EDSR模型过程中遇到的问题,包括批量读取图片选择fit_generator,解决梯度爆炸的残差缩放问题,残差网络的构建,模型保存与加载的注意事项,以及使用tensorboard时出现的模型重复问题。
摘要由CSDN通过智能技术生成

最近需要实现超分辨率问题,但EDSR模型不适合自己的数据集,故重新用keras写了一遍,以下是遇到的坑:

1、批量读取图片

        因为内存不够的问题,尝试了h5py,train_on_batch,以及fit_generator三种不同的加载大数据集的方式,最后感觉还是fit_generator好用,生成器代码如下(训练和标签均为图片):

def generator(index_list,path,batch_size):
    list_x=[]
    list_y=[] 
    count=0
    i = 0
    while 1:
        f = index_list[i%len(index_list)]
        img_path1 = path + 'low/' + f
        img_path2 = path + 'high/' + f
        img_data = image.load_img(img_path1)
        img_label = image.load_img(img_path2)
        img_array = image.img_to_array(img_data)
        img_array2 = image.img_to_array(img_label)
        list_x.append(img_array)
        list_y.append(img_array2)
        count+=1
        i = i+1
        if count>=batch_size: #数据记录达到batch_size才返回
   
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值