递归和动态规划(python)

        暴力递归: 1,把问题转化为规模缩小了的同类问题的子问题 2,有明确的不需要继续进行递归的条件(base case) 3,有当得到了子问题的结果之后的决策过程 4,不记录每一个子问题的解
        动态规划: 1,从暴力递归中来 2,将每一个子问题的解记录下来,避免重复计算 3,把暴力递归的过程,抽象成了状态表达 4,并且存在化简状态表达,使其更加简洁的可能

1、求n!的结果

        想法是转换成fact(n)=n*fact(n-1)

# 求n!,时间复杂度为O(logN)
def factorial(n):
    if n == 1:
        return 1
    else:
        return n*factorial(n-1)

if __name__ == '__main__':
    n = int(input())
    print(factorial(n))

2、汉诺塔问题   打印n层汉诺塔从最左边移动到最右边的全部过程

A,B,C三个圆柱,分别为初始位,过渡位,目标位,设A柱为初始位,C位为最终目标位

(1)将最上面的n-1个圆盘从初始位移动到过渡位

(2)将初始位的最底下的一个圆盘移动到目标位

(3)将过渡位的n-1个圆盘移动到目标位

对于递归算法中的嵌套函数f(n-1)来说,其初始位,过渡位,目标位发生了变化
 

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,下面我将分别给出递归动态规划的解法,并使用 Python 代码来实现。 01背包问题是一个经典的动态规划问题,其表述如下:有一个背包,容量为C,有n个物品,每个物品有重量w和价值v,现在要把这些物品放入背包中,使得背包中物品的总价值最大,求最大价值。 1. 递归解法 递归解法比较简单,但是由于存在大量的重复计算,效率比较低。具体思路是:对于每个物品,有两种选择,放入背包或不放入背包,然后递归处理剩下的物品。 代码如下: ```python def knapsack01_recursion(C, w, v, n): if n == 0 or C == 0: return 0 if w[n-1] > C: return knapsack01_recursion(C, w, v, n-1) else: return max(v[n-1] + knapsack01_recursion(C-w[n-1], w, v, n-1), knapsack01_recursion(C, w, v, n-1)) ``` 2. 动态规划解法 动态规划解法使用一个二维数组来存储中间状态,具体思路是:定义一个二维数组dp[i][j],表示前i个物品放入容量为j的背包中可以获得的最大价值。对于每个物品,有两种选择,放入背包或不放入背包,状态转移方程为: dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i-1]]+v[i-1]),其中w[i-1]和v[i-1]分别表示第i个物品的重量和价值。 最终的结果为dp[n][C]。 代码如下: ```python def knapsack01_dp(C, w, v, n): dp = [[0 for _ in range(C+1)] for _ in range(n+1)] for i in range(1, n+1): for j in range(1, C+1): if w[i-1] > j: dp[i][j] = dp[i-1][j] else: dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i-1]]+v[i-1]) return dp[n][C] ``` 以上就是使用递归动态规划解决01背包问题的Python代码实现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值