Anaconda环境下安装Pytorch操作步骤

 一、默认安装Pytorch(CPU版)

1、电脑没有NVIDIA GPU时,默认安装CPU版Pytorch,进入Anaconda Prompt,

【可选步骤-测试】检查本机是否安装Pytorch,如进入python后,输入import torch,反馈ModuleNotFoundError: No module named 'torch',说明未安装Pytorch。

2、pip安装Pytorch

如不需要多个虚拟环境时,可以在base(即安装Anaconda默认根环境)下进行安装,输入下段指令后 按回车键。

因网络原因,使用国内镜像源(如清华源)加速下载:
pip install torch torchvision -i https://pypi.tuna.tsinghua.edu.cn/simple

等待下载~   下载完毕后出现Successfully installed sympy-1.14.0 torch-2.7.0 torchvision-0.22.0 typing-extensions-4.13.2,表示已成功下载Pytorch。

二、安装Pytorch(GPU版)

1、确认显卡和驱动支持 CUDA

(1) 检查 NVIDIA 显卡型号
  • Windows:打开 任务管理器 → 性能 → GPU,查看显卡型号(如 RTX 3060、GTX 1660)。

(2)检查 NVIDIA 驱动是否安装

Windows:快捷键win+r  打开 【运行】界面,输入cmd进入,

输入指令:

nvidia-smi
  • 如果报错 'nvidia-smi' 不是内部或外部命令,说明驱动未安装,需先安装 NVIDIA 驱动

  • 正常情况会显示 GPU 信息,如:

  • +-----------------------------------------------------------------------------+
    | NVIDIA-SMI 535.86.05    Driver Version: 535.86.05    CUDA Version: 12.2     |
    |-------------------------------+----------------------+----------------------+
    | GPU  Name            TCC/WDDM | Bus-Id        Disp.A | Volatile Uncorr. ECC |
    |===============================+======================+======================|
    |   0  NVIDIA RTX 3060   WDDM   | 00000000:01:00.0 On |                  N/A |
    +-------------------------------+----------------------+----------------------+

  • CUDA Version 显示的是 驱动支持的最高 CUDA 版本(但实际 CUDA Toolkit 可以安装更低版本)。

2、安装 CUDA Toolkit

PyTorch 需要 CUDA Toolkit 来调用 GPU 计算。

(1) 选择与 PyTorch 匹配的 CUDA 版本

  • 访问 PyTorch 官网,查看支持的 CUDA 版本(如 CUDA 11.8 或 CUDA 12.1)。

  • CUDA 版本 ≤ 驱动支持的最高版本nvidia-smi 显示的版本)。

(2) 下载 CUDA Toolkit

  • 前往 NVIDIA CUDA 下载页,选择匹配版本(如 CUDA 11.8)。

  • 按系统(Windows/Linux)安装:

    • Windows:运行 .exe 安装程序,选择 自定义安装,勾选:

      • CUDA(必须)

      • cuDNN(可选,但推荐安装以加速深度学习)。

(3) 验证 CUDA 安装

win+r进入运行界面,输入cmd进入:

nvcc --version
  • 如果显示 nvcc: command not found,说明 CUDA 未正确安装或环境变量未配置。

3、安装 PyTorch GPU 版本

(1) 通过 PyTorch 官网命令安装

访问 PyTorch 官网,选择:

  • PyTorch 版本(如 2.0.1)。

  • CUDA 版本(如 11.8)。

  • 安装方式pip 或 conda)。

示例(CUDA 11.8 + pip)
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
示例(CUDA 12.1 + conda)

conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia

(2) 验证 PyTorch 是否识别 GPU

运行 Python 并输入:

import torch
print(torch.__version__)           # PyTorch 版本
print(torch.cuda.is_available())   # 返回 True 表示 GPU 可用
print(torch.cuda.get_device_name(0))  # 显示 GPU 型号(如 "NVIDIA RTX 3060")

  • 如果 torch.cuda.is_available() 返回 False,可能是:

    • PyTorch 版本与 CUDA 不匹配(重新安装)。

    • CUDA 未正确安装(检查 nvcc --version)。

4、常见问题解决

(1) torch.cuda.is_available() 返回 False

  • 可能原因

    • PyTorch 安装的是 CPU 版本(卸载重装 GPU 版)。

    • CUDA 版本不匹配(检查 nvcc --version 和 PyTorch 要求的 CUDA 版本)。

    • 驱动未安装(运行 nvidia-smi 确认)。

  • 解决方案

  • # 卸载旧版本
    pip uninstall torch torchvision torchaudio
    # 重新安装 GPU 版本(确保 CUDA 版本匹配)
    pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

 (2) 安装时网络错误

  • 使用国内镜像加速:

  • pip install torch torchvision torchaudio -i https://pypi.tuna.tsinghua.edu.cn/simple
  • 但镜像可能更新延迟,建议优先用 PyTorch 官方命令。

(3) 显存不足(OOM)

  • 减少 batch_size 或清理缓存:

    torch.cuda.empty_cache()  # 释放未使用的 GPU 内存
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值