一、默认安装Pytorch(CPU版)
1、电脑没有NVIDIA GPU时,默认安装CPU版Pytorch,进入Anaconda Prompt,
【可选步骤-测试】检查本机是否安装Pytorch,如进入python后,输入import torch,反馈ModuleNotFoundError: No module named 'torch',说明未安装Pytorch。
2、pip安装Pytorch
如不需要多个虚拟环境时,可以在base(即安装Anaconda默认根环境)下进行安装,输入下段指令后 按回车键。
因网络原因,使用国内镜像源(如清华源)加速下载:
pip install torch torchvision -i https://pypi.tuna.tsinghua.edu.cn/simple
等待下载~ 下载完毕后出现Successfully installed sympy-1.14.0 torch-2.7.0 torchvision-0.22.0 typing-extensions-4.13.2,表示已成功下载Pytorch。
二、安装Pytorch(GPU版)
1、确认显卡和驱动支持 CUDA
(1) 检查 NVIDIA 显卡型号
-
Windows:打开 任务管理器 → 性能 → GPU,查看显卡型号(如 RTX 3060、GTX 1660)。
(2)检查 NVIDIA 驱动是否安装
Windows:快捷键win+r 打开 【运行】界面,输入cmd进入,
输入指令:
nvidia-smi
-
如果报错
'nvidia-smi' 不是内部或外部命令
,说明驱动未安装,需先安装 NVIDIA 驱动。 -
正常情况会显示 GPU 信息,如:
-
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 535.86.05 Driver Version: 535.86.05 CUDA Version: 12.2 |
|-------------------------------+----------------------+----------------------+
| GPU Name TCC/WDDM | Bus-Id Disp.A | Volatile Uncorr. ECC |
|===============================+======================+======================|
| 0 NVIDIA RTX 3060 WDDM | 00000000:01:00.0 On | N/A |
+-------------------------------+----------------------+----------------------+ -
CUDA Version
显示的是 驱动支持的最高 CUDA 版本(但实际 CUDA Toolkit 可以安装更低版本)。
2、安装 CUDA Toolkit
PyTorch 需要 CUDA Toolkit 来调用 GPU 计算。
(1) 选择与 PyTorch 匹配的 CUDA 版本
-
访问 PyTorch 官网,查看支持的 CUDA 版本(如
CUDA 11.8
或CUDA 12.1
)。 -
CUDA 版本 ≤ 驱动支持的最高版本(
nvidia-smi
显示的版本)。
(2) 下载 CUDA Toolkit
-
前往 NVIDIA CUDA 下载页,选择匹配版本(如
CUDA 11.8
)。 -
按系统(Windows/Linux)安装:
-
Windows:运行
.exe
安装程序,选择 自定义安装,勾选:-
CUDA
(必须) -
cuDNN
(可选,但推荐安装以加速深度学习)。
-
-
(3) 验证 CUDA 安装
win+r进入运行界面,输入cmd进入:
nvcc --version
-
如果显示
nvcc: command not found
,说明 CUDA 未正确安装或环境变量未配置。
3、安装 PyTorch GPU 版本
(1) 通过 PyTorch 官网命令安装
访问 PyTorch 官网,选择:
-
PyTorch 版本(如
2.0.1
)。 -
CUDA 版本(如
11.8
)。 -
安装方式(
pip
或conda
)。
示例(CUDA 11.8 + pip):
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
示例(CUDA 12.1 + conda):
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
(2) 验证 PyTorch 是否识别 GPU
运行 Python 并输入:
import torch
print(torch.__version__) # PyTorch 版本
print(torch.cuda.is_available()) # 返回 True 表示 GPU 可用
print(torch.cuda.get_device_name(0)) # 显示 GPU 型号(如 "NVIDIA RTX 3060")
-
如果
torch.cuda.is_available()
返回False
,可能是:-
PyTorch 版本与 CUDA 不匹配(重新安装)。
-
CUDA 未正确安装(检查
nvcc --version
)。
-
4、常见问题解决
(1) torch.cuda.is_available()
返回 False
-
可能原因:
-
PyTorch 安装的是 CPU 版本(卸载重装 GPU 版)。
-
CUDA 版本不匹配(检查
nvcc --version
和 PyTorch 要求的 CUDA 版本)。 -
驱动未安装(运行
nvidia-smi
确认)。
-
-
解决方案:
-
# 卸载旧版本
pip uninstall torch torchvision torchaudio
# 重新安装 GPU 版本(确保 CUDA 版本匹配)
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
(2) 安装时网络错误
-
使用国内镜像加速:
-
pip install torch torchvision torchaudio -i https://pypi.tuna.tsinghua.edu.cn/simple
-
但镜像可能更新延迟,建议优先用 PyTorch 官方命令。
(3) 显存不足(OOM)
-
减少
batch_size
或清理缓存:torch.cuda.empty_cache() # 释放未使用的 GPU 内存