机器视觉
文章平均质量分 90
充电君
这个作者很懒,什么都没留下…
展开
-
开源人形机器人全套图纸+代码(文末领取)!稚晖君1024玩了个大的!
末领取:开源人形机器人全套图纸+代码赶着的程序员节,刚刚发了个大福利:智元人形机器人,,包括设计图纸和代码!具体而言,这次开源的是智元家的。原创 2024-10-25 17:19:39 · 1116 阅读 · 0 评论 -
如何使用OpenCV摄像头测距,实战教程,文末附源码
通过这篇文章,我们学会了使用相似三角形计算图片中一个已知物体到相机的距离。需要先测量出目标物体的实际宽度和目标物体到相机的距离,然后使用图像处理的方法自动计算图片中目标物体的像素宽度,并使用相似三角形计算出相机的焦距。根据相机的焦距就可以计算图片中的目标物体到相机的距离。完整代码获取订阅我的公众号「资源充电吧」原创 2024-10-23 17:34:17 · 1196 阅读 · 0 评论 -
基于sklearn的机器学习 — K近邻(KNN)
k-nearest neighbors(KNN)算法是监督机器学习中最简单但最常用的算法之一。KNN通常被认为是一种惰性的学习算法,从技术上讲,它只是存储训练数据集,而不经历训练阶段。KNN的原理是将新样本的特征与数据集中现有样本的特征进行比较。然后通过算法选择最接近的k个样本(k是自定义参数),新样本的输出是基于"k"最近样本的多数类(用于分类)或平均值(用于回归)确定的。原创 2024-10-22 10:42:39 · 1009 阅读 · 0 评论 -
小白也能看懂的YOLOv8预测参数详解(全面详细、重点突出)
YOLOv8现在可以接受输入很多,如下表所示。包括图像、URL、PIL图像、OpenCV、NumPy数组、Torch张量、CSV文件、视频、目录、通配符、YouTube视频和视频流。表格✅指示了每个输入源是否可以在流模式下使用,并给出了每个输入源使用流模式的示例参数。原创 2024-10-18 09:57:03 · 881 阅读 · 0 评论 -
深度解析YOLOV9,目标检测算法(附论文和源码)|
YOLOv9是由Chien-Yao Wang, I-Hau Yeh, and Hong-Yuan Mark Liao开发的计算机视觉模型。Hong-Yuan Mark Liao和Chien-Yao Wang还对YOLOv4、YOLOR和YOLOv7等流行的模型架构进行了研究。YOLOv9引入了两种新的架构:YOLOv9和GELAN,这两种架构都可以从论文发布的YOLOv9 Python库中使用。原创 2024-05-15 12:03:42 · 2180 阅读 · 0 评论 -
视觉SLAM:一直在入门,如何能精通,CV领域的绝境长城,
上周的组会上,我给研一的萌新们讲解什么是SLAM,为了能让他们在没有任何基础的情况下大致听懂,PPT只能多图少字没公式,这里我就把上周的组会汇报总结一下。福利。原创 2023-08-22 12:02:03 · 806 阅读 · 37 评论 -
狂码三万字 | 三维场景点云理解与重建技术
目录00 引言01 点云特征提取与匹配1.1 传统点云特征提取1.2 点云深度学习1.3 点云卷积1.4 稀疏卷积1.5 点云Transformer1.6 点云旋转不变特征提取1.7 点云匹配02 场景点云语义分割2.1 场景表征与数据集2.1.1 室内场景表征与相关数据集2.1.2 室外场景表征与相关数据集2.2 点云场景语义分割2.2.1 全监督分割方法2.2.2 有限标注条件下的分割方法2.2.3 无监督分割方法2.3 多模态融合的分割方法2.4 场景点云的实例分割方法03 扫描点云物体补全3原创 2023-08-09 12:11:08 · 1814 阅读 · 28 评论 -
(附代码)视觉激光雷达信息融合与联合标定
本文主要介绍了关于视觉和激光雷达进行信息融合相关内容,包括相机标定,摄像头与激光雷达联合标定,信息融合节点等等利用激光雷达和视觉信息融合,我们可以结合二者的优点优化障碍物检测或交通标志的识别,以及优化其他相关任务等等。充电君会在第一时间给你带来最新、最全面的解读,别忘了三联一波哦。关注公众号:资源充电吧回复:Chat GPT充电君发你:免费畅享使用中文版哦点击小卡片关注下,回复:IT想要的资料全都有。原创 2023-08-04 12:13:21 · 951 阅读 · 39 评论