AI
文章平均质量分 87
充电君
这个作者很懒,什么都没留下…
展开
-
开源人形机器人全套图纸+代码(文末领取)!稚晖君1024玩了个大的!
末领取:开源人形机器人全套图纸+代码赶着的程序员节,刚刚发了个大福利:智元人形机器人,,包括设计图纸和代码!具体而言,这次开源的是智元家的。原创 2024-10-25 17:19:39 · 1116 阅读 · 0 评论 -
数值计算与仿真中的 “刚性” 是什么?
在数值计算分析领域,描述的是在求解微分方程时,由于系统中存在显著不同的时间尺度或空间尺度,导致数值解的稳定性和计算效率出现问题的现象。刚性一般用于描述包含多个时间尺度的常微分方程(ODE),由于存在多个不同的时间尺度,有的部分变化很快,有的部分变化很慢。这会导致传统的数值方法(如显式欧拉法)需要非常小的步长才能保持数值稳定性。刚性本身并不是一个数学上严格定义的术语,但它在数值计算及模拟中具有重要的应用意义。其可类比于物理学中的刚体概念。原创 2024-10-21 21:13:59 · 1000 阅读 · 0 评论 -
小白也能看懂的YOLOv8预测参数详解(全面详细、重点突出)
YOLOv8现在可以接受输入很多,如下表所示。包括图像、URL、PIL图像、OpenCV、NumPy数组、Torch张量、CSV文件、视频、目录、通配符、YouTube视频和视频流。表格✅指示了每个输入源是否可以在流模式下使用,并给出了每个输入源使用流模式的示例参数。原创 2024-10-18 09:57:03 · 881 阅读 · 0 评论 -
esp32上使用chatGPT做一些有意思的事情
在自定义数据集上训练卷积神经网络时,选择正确的图像尺寸至关重要,因为这将影响模型的训练时间和性能。我们将选择合适的最佳训练图像尺寸的步骤分为两步,第一步是可视化数据集中图像大小,第二步是分析数据分布情况选择最佳训练尺寸。缩小:较大的图像将被缩小,这使得CNN更难了解分类或检测所需的特征,因为关键特征所在的像素数量将显著减少。该数据集有 7000 多张不同大小和分辨率的图像,通过下面代码可视化数据集中图像的尺寸分布情况。因此,我们必须选择自己的训练图像尺寸,我们越接近最佳图像大小,效果就越好。原创 2024-10-17 18:09:46 · 336 阅读 · 0 评论 -
如何用AI提升产品体验
本质上 Github 的 Copilot 是重构了原有的用户体验,原有的体验不是产品本身提供的,是用户没有选择的选择,链路很长,中间信息割裂,再加上传统搜索本身的局限,很难有一个好的体验。但是它可以进行更加复杂的查询了,选定不论是一个字、一个词、还是一句话,都可以进行查询,查询返回的结果可以是字典、词典里的,也可以是搜索引擎返回的,也可以是 AI 对书的内容理解之后的回答。第二个思路是,在产品的使用场景中,能够通过 AI 技术,创造出一些全新的体验,而这些体验又能极大提升用户使用产品的效率。原创 2024-10-16 10:18:07 · 732 阅读 · 0 评论 -
字节扣子模型广场,给AI大模型搭了一座擂台
再比如在硬件行业,AI手机、AI PC、AI电视、AI穿戴、AI汽车更是蔚然成风,继OPPO、vivo、荣耀、三星、华为、魅族等安卓巨头加码AI硬件后,WWDC 24上苹果的动作更表明,AI手机以及AI硬件是大势所趋。不论是移动互联网还是AI大模型,软件与硬件均密不可分。AI想要普及,必须下沉到各类软硬件产品上,要么成为AI硬件,要么成为融入到AI硬件中的AI应用——其中最具代表性的是Bot,即Robot(机器人)的缩写,它是当前应用最广泛的智能应用形态,具有代表性的是ChatGPT、字节豆包、文心一言。原创 2024-06-19 14:25:20 · 1067 阅读 · 0 评论 -
解决 Transformer 根本缺陷,CoPE 论文爆火:所有大模型都能获得巨大改进!
首先,我们可以看到位置明显具有上下文相关性,因为无论它们的相对位置如何,注意力都倾向于落在特定的 token 上。绝对 PE 的表现更差。在 CoPE 中,这是可能的,因为一个注意力头可以计数段落,而另一个注意力头计数部分,然后它可以只关注位置 0。在 CoPE 中,位置是通过上下文相关的方式来测量的,而不是简单的 token 计数。作为当前大型语言模型 (LLM) 的主要支柱 Transformer 架构,依赖于注意力机制,而这种机制本身就缺乏顺序信息,因此,需要一种额外的机制来编码数据的位置信息。原创 2024-06-03 11:41:26 · 844 阅读 · 0 评论 -
深度解析YOLOV9,目标检测算法(附论文和源码)|
YOLOv9是由Chien-Yao Wang, I-Hau Yeh, and Hong-Yuan Mark Liao开发的计算机视觉模型。Hong-Yuan Mark Liao和Chien-Yao Wang还对YOLOv4、YOLOR和YOLOv7等流行的模型架构进行了研究。YOLOv9引入了两种新的架构:YOLOv9和GELAN,这两种架构都可以从论文发布的YOLOv9 Python库中使用。原创 2024-05-15 12:03:42 · 2180 阅读 · 0 评论 -
「ChatGPT」掀起新一轮AI热潮!超越GPT-4 Turbo,商汤日日新大升级!
福利:文末有福利哦,最新AI资料免费领福利:文末有福利哦,最新AI资料免费领chat gpt 免费领,无魔法,无限制在大模型的浪潮席卷而来的前几年,其实也掀起过一阵 AI 创业热潮。其中商汤科技、旷视科技、云从科技、依图科技是这个时期的代表,这四家公司也被称为「中国 AI 四小龙」。到了 OpenAI 掀起的这股新浪潮中,四小龙中的商汤科技还留在舞台中央。去年 4 月商汤发布「日日新·大模型」 系列,是国内最早推出基于千亿参数大语言模型的公司之一。苟日新,日日新,又日新。原创 2024-04-24 08:11:09 · 1056 阅读 · 2 评论 -
狂码三万字 | 三维场景点云理解与重建技术
目录00 引言01 点云特征提取与匹配1.1 传统点云特征提取1.2 点云深度学习1.3 点云卷积1.4 稀疏卷积1.5 点云Transformer1.6 点云旋转不变特征提取1.7 点云匹配02 场景点云语义分割2.1 场景表征与数据集2.1.1 室内场景表征与相关数据集2.1.2 室外场景表征与相关数据集2.2 点云场景语义分割2.2.1 全监督分割方法2.2.2 有限标注条件下的分割方法2.2.3 无监督分割方法2.3 多模态融合的分割方法2.4 场景点云的实例分割方法03 扫描点云物体补全3原创 2023-08-09 12:11:08 · 1814 阅读 · 28 评论 -
(附代码)视觉激光雷达信息融合与联合标定
本文主要介绍了关于视觉和激光雷达进行信息融合相关内容,包括相机标定,摄像头与激光雷达联合标定,信息融合节点等等利用激光雷达和视觉信息融合,我们可以结合二者的优点优化障碍物检测或交通标志的识别,以及优化其他相关任务等等。充电君会在第一时间给你带来最新、最全面的解读,别忘了三联一波哦。关注公众号:资源充电吧回复:Chat GPT充电君发你:免费畅享使用中文版哦点击小卡片关注下,回复:IT想要的资料全都有。原创 2023-08-04 12:13:21 · 951 阅读 · 39 评论