该文档聚焦数据治理,为相关人员提供全面指导,适用于企业数据管理人员、IT 技术人员、企业决策层以及对数据治理感兴趣的人士。
数据治理背景与目标:大型集团或政务管理部门在数据管理方面存在不足,如多头管理、标准缺失、主数据不统一等。数据治理旨在将数据作为资产进行全生命周期管理,目标是提升数据质量与安全性,实现数据共享,推动信息化发展。
数据治理核心领域:涵盖数据模型、生命周期、标准、主数据、质量、服务和安全等方面。数据模型需具备非冗余等特征;数据生命周期包括生成传输、存储、处理应用和销毁;数据标准包含基础性和应用性标准;主数据管理整合共享核心数据;数据质量关注绝对和过程质量;数据服务旨在高效服务业务;数据安全保障数据在各环节的安全。
数据治理保障机制:制度章程包含规章制度、管控办法和考核机制,确保数据治理有章可循。组织架构涉及领导小组、工作组和不同岗位人员,明确各自职责。流程管理依数据治理内容建流程。IT 技术应用包括支撑平台和技术规范,支撑平台实现数据管理功能,技术规范保障可持续管理。
数据管理规范与评估:详细介绍数据管理各环节规范,如采集、审核、维护等。数据质量评估办法从核心指标、评估模式和管理流程展开,通过多种方法检查数据,生成评估报告,助力数据治理持续改进。