R语言学习
文章平均质量分 69
竹落
这个作者很懒,什么都没留下…
展开
-
R语言学习(四)
R中有许多软件包,这些包中有丰富的绘图函数,使用这些函数能画出许多生动,简明的图形,这也是R语言强大的表现之一,这种主要介绍下与绘画图形相关的参数设置1.dev.new():打开一个新的图形界面;dev.off():关闭当前打开的图形;2.某变量par(no.readonly=TRUE):一般在绘制新的图形之前使用该参数,可以保存R软件中原有的对于绘画图形所设置的参数,便于绘制完图形之后进原创 2015-01-26 18:36:19 · 908 阅读 · 0 评论 -
R语言学习(十一)
前面我们曾介绍过假设检验的统计学方法,现在这章简单介绍下置换检验,置换检验也称随机化检验或重随机化检验,它的研究背景可以参考如下例子: 有两种处理条件的实验,十个受试者已经被随机分配到其中一种条件(A 或B )中,相应的结果变量(score)也已经被记录,现在我们要探究的就是两种处理方式的影响不同吗??这个就是我们在学习置换检验时可以参考的应用背景。。。1.检验两样原创 2015-02-14 10:27:29 · 2886 阅读 · 0 评论 -
R语言学习(十)
在前面的章节中曾介绍过几种图形,这一章再介绍其他几种图形,这些图形没有之前条形图等用的广泛,但从某种程度来说,比条形图等要“高级”。。。1.lowess(x,y,…):平滑函数,用来在已经绘制的图形中添加一条平滑曲线,其中x是横坐标,y是纵坐标2.scatterplot(x~y|z,id.method=”identify”,labels=row.names(y),..):绘制z在不同情况下原创 2015-02-13 11:27:02 · 1042 阅读 · 0 评论 -
R语言学习(一)
因为对数据挖掘很感兴趣,所以就学了下R语言的皮毛知识,R语言相对于数据挖掘来说我觉得它更倾向于用统计学的知识来进行数据分析,而数据挖掘好学就更加偏向于计算机领域,它通过各种算法来实现挖掘,但不管怎么说,R语言在当今大数据时代扮演着非常重要的角色,感觉R语言的优点很多,主要的就是它的包的种类实在是丰富,可以便利地进行各个领域的数据分析工作。。下面我将开始整理自己所学的内容。。。1.insta原创 2015-01-23 17:38:53 · 757 阅读 · 0 评论 -
R语言学习(十三)
1.R语言中有许多函数可以对矩阵进行各种操作,如:diag(矩阵):将矩阵的主对角元素提取出来,组成一个向量t(矩阵):获得矩阵的转置矩阵solve(矩阵):求得矩阵的逆矩阵eigem(矩阵):求得矩阵的特征值和特征向量2.mode(对象),length(对象)分别用来获得对象的模式和其长度3.gl(因子个数,重复个数,labels=c(...)):生成相应因子的序列,如:原创 2015-02-17 17:40:25 · 1633 阅读 · 0 评论 -
R语言学习(十二)
在前面的章节中我曾经介绍了lm()线性回归等方法,这些方法的基本特征都是通过几个观测变量来对预测变量进行预测,这章接着介绍下和这部分相关的几个内容1.主成分分析:当观测变量过多时,可以将这些观测变量综合为一个或多个其他的变量(因子),利用这些变量来进行预测,模型拟合,这些其他的变量就称之为主成分,其分析步骤为:确定主成分个数:fa.parallel(数据集,fa="PC",n.iter=模原创 2015-02-16 19:07:29 · 923 阅读 · 0 评论 -
R语言学习(九)
R语言进行数学分析时,不仅可以进行事件的预测等,同时还能对预测事件进行相应假设,在进行假设时,一般会关注以下四个变量:样本大小;显著性水平(假设成立时,拒绝它的概率);功效分析(假设成立时,接收它的概率);效应值;R语言介绍了几种检验方法,这几种方法都是在已经知道以上某三个变量时,求另外一个变量的值,以期符合假设1.t检验pwr.t.test(n=样本大小,d=效应值,sig.le原创 2015-02-08 17:34:47 · 1295 阅读 · 0 评论 -
R语言学习(八)
上节介绍了连续区间数值的一些回归方法,现在开始介绍下类别型变量的回归拟合方法-----方差分析1.单因素方差分析:单个预测变量的方差分析拟合模型:aov(A~B,data=数据)分析步骤:1.1 查看不同类型的均值:aggregate(A,by=list(B),FUN=mean)1.2 查看不同类型的方差:aggregate(A,by=list(B),FUN=sd)1.3原创 2015-02-05 17:51:40 · 8439 阅读 · 0 评论 -
R语言学习(七)
R语言可以进行各种数学分析,如可以进行预测,求异常产品等等,在进行预测问题时用的最多的为回归方法,当然了这种方法虽然简便,但其预测结果通常不是太准确,这是其一个主要的缺点1.回归:探测自变量和因变量的相关关系,或者可以理解为通过自变量预测因变量2.回归有以下几种:简单线性回归:y=a+bx lm(y~x,data=...)多项式回归: 多元式回归:原创 2015-02-03 17:56:23 · 3964 阅读 · 0 评论 -
R语言学习(六)
1.R语言中可以通过下面的方式生成频数表和级联表,对数据进行基本的统计以便观察table(para1,para2,...):生成para1,para2的二维表,para1和para2通常为因子,即类别量,table的结果即为para1和para2不同取值情况下数据的个数,当然table函数的参数还可以为更多个,这样生成的就会为相应的高维表xtabs(~para1+para2...):和ta原创 2015-02-01 18:56:24 · 2122 阅读 · 0 评论 -
R语言学习(五)
R中有许多包可以绘制各种图形,如条形图,直方图等等,在学习R语言的过程中我也调用相应函数绘制了这些图形,但感觉掌握的还是皮毛而已,图形通过不同参数的设置是可以进行各种各样的变化的,希望今后能在实际的运用过程中进一步灵活掌握绘图技巧1.条形图:barplot(数据源,....horiz=TRUE/FALSE):当horiz=TRUE时就会变为横向条形图;2.饼图:pipe(数据源,label原创 2015-01-27 19:02:02 · 4994 阅读 · 0 评论 -
R语言学习(三)
1.R语言中数据模型的取值操作,如向量d:d[1]---取出向量d中第一个元素;d[c(1,3,4)]----取出向量d中第1,3,5个元素;如数据框s:s[1,2]---取出数据框s中第一行第二列的数据;s[1,]---取出数据框第一行的数据;s[,1]---取出数据框s第一列的数据;2.给数据框添加新变量,如数据框s:s$newVariable;或者利用transform函数,至于tr原创 2015-01-25 17:53:24 · 942 阅读 · 0 评论 -
R语言学习(二)
R语言中有几个常用的数据结构,分别是向量,矩阵,以及数据框1.直接利用c(ele1,ele2...)函数输入即可2.矩阵:matrix()数据,行数,列数,byrow=TRUE/FALSE.....)其中byrow这一参数指的是数据按列还是行填充,默认按列进行填充,为TRUE时按行进行填充,为FALSE时按列进行填充3.数据框:data.frame(列1,列2...),其中列1,列2等原创 2015-01-24 17:39:36 · 785 阅读 · 0 评论