R语言学习(八)

这篇博客主要讲解R语言中的方差分析方法,包括单因素方差分析、单因素协方差分析、双因素方差分析和多元方差分析,并详细阐述了每种分析的步骤和模型拟合。此外,还介绍了如何进行多重比较,如Tukey和glht函数的应用,以及如何检查和调整变量类型以避免错误。
摘要由CSDN通过智能技术生成

上节介绍了连续区间数值的一些回归方法,现在开始介绍下类别型变量的回归拟合方法-----方差分析

1.单因素方差分析:单个预测变量的方差分析

拟合模型:aov(A~B,data=数据)

分析步骤:

1.1 查看不同类型的均值:aggregate(A,by=list(B),FUN=mean)

1.2 查看不同类型的方差:aggregate(A,by=list(B),FUN=sd)

1.3 查看拟合模型的结果,即上节所提到的coefficients,residuals等等:summary(模型)

1.4 多重比较:TukeyHSD(模型)  glht(模型,linfct=mcp(B="Tukey")),其中Tukey为不同类型之间两两比较

2.单因素协方差分析:单个预测变量,不过考虑了样本自带的协变量(即样本自带的考虑因素)的方差分析

拟合模型:aov(A~B+C,data=数据)其中C为协变量

分析步骤:

2.1 查看不同类型的均值:如单因素方差分析中所介绍

2.1 查看不同类型的方差:如单因素方差分析中所介绍

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值