项目开发,了解代码运行情况并记录日志至关重要。对于python开发者来说,Loguru是一个简单但功能强大的日志记录库,与Python内置的logging模块相比,Loguru提供了更简洁的API和更多的功能,它使得跟踪代码的行为变得轻松而高效。
【1.安装Loguru】
pip install loguru
【2.基本用法】
from loguru import logger
# 使用默认配置创建一个日志记录器对象
logger = logger.opt()
logger.debug('这是一条debug日志')
logger.info("这是一条信息日志")
logger.warning("这是一条警告日志")
logger.error("这是一条错误日志")
【3.日志级别】共7级
等级 | 方法 |
---|---|
TRACE | logger.trace() |
DEBUG | logger.debug() |
INFO | logger.info() |
SUCESS | logger.sucess() |
WARNING | logger.warnning() |
ERROR | logger.error() |
CRITICAL | logger.critical() |
【4.常见参数配置】
rotation配置:
# 超过50M自动分割文件
logger.add('runlog.log', rotation="50 MB",encoding='utf-8')
# 文件名中加入时间
logger.add('runlog_{time}.log', rotation="50 MB",encoding='utf-8')
# 每天固定时间定时创建文件
logger.add('runtime_{time}.log', rotation='HH:mm',encoding='utf-8')
# 每隔一段时间创建文件
logger.add('runtime_{time}.log', rotation='1 week',encoding='utf-8')
compression配置:
# 保留压缩
logger.add('runlog_{time}.log',compression='zip',encoding='utf-8')
【5 format 配置日志记录格式化模板】
logger.add('保存日志路径', format="{time:YYYY-MM-DD HH:mm:ss} {level} From {module}.{function} : {message}")
常见字段含义如下:
【6】 高级范例
(1)将日志分成不同级别分别记录
from loguru import logger
logger.add("debug.log", format="{time} {level} {message}", level="DEBUG")
logger.add("info.log", format="{time} {level} {message}", level="INFO")
logger.add("error.log", format="{time} {level} {message}", level="ERROR")
logger.debug("debug message")
logger.info("info message")
logger.error("error message")
(2)让日志同时输出到控制台而不是仅仅在文件中
logger.add(sys.stdout, format="{time} {level} {message}", filter="my_module", level="INFO")
(3)自定义opt对象并输出日志
from loguru import logger
# 创建一个默认配置的日志记录器对象
logger = logger.opt()
# 创建一个输出到文件的处理器
logger.add("mylog.log", rotation="10 MB")
# 使用自定义配置创建一个新的日志记录器对象
mylogger = logger.opt(
colors=True,
format="<green>{time}</green> <level>{message}</level>",
level="DEBUG"
)
# 输出日志信息
mylogger.debug("this is a debug log")
mylogger.info("this is an info log")
(4)日志旋转
日志旋转是指按照一定的规则自动分割日志文件,以防止日志文件变得过大。在Loguru中,你可以轻松设置日志旋转:
logger.add("my_log_file.log", rotation="100 MB") # 每当文件达到100MB时分割
(5) 日志过滤
有时你可能只想记录特定部分的日志。可以通过logger.add()函数的filter参数来添加过滤器。Loguru通过简单的过滤机制使得这成为可能:
logger.add("filtered_log.log", filter=lambda record: "敏感" in record["message"])
又如,我们可以添加一个过滤器来只输出级别为INFO或更高级别的日志信息,如下所示:
from loguru import logger
# 添加输出到终端的处理器,并添加日志过滤器
logger.add(
handler=sys.stdout,
format="<green>{time}</green> <level>{message}</level>",
enqueue=True,
filter=lambda record: record["level"].no >= 20
)
# 使用默认配置创建一个日志记录器对象
logger = logger.opt()
logger.info('hello, world!')
logger.debug('this is a debug log')
(6)异常捕获
Loguru还可以帮助你捕获并记录异常,可以通过logger.catch()方法来捕获异常并记录异常信息。这对于调试非常有用:
@logger.catch
def my_function():
# 你的代码
pass
(7)自定义日志级别
loguru允许我们自定义日志级别,可以通过logger.level()函数来添加自定义日志级别。例如,我们可以添加一个名为TRACE的日志级别,并将其显示
from loguru import logger
# 添加自定义日志级别
logger.level("TRACE", no=5, color="<blue>", icon="🐞")
# 使用自定义日志级别
logger.trace("this is a trace log")
在上面的示例中,我们使用logger.level()函数添加了一个名为TRACE的日志级别,并将其显示为蓝色并带有一个小虫子图标。然后,我们使用logger.trace()方法输出了一条自定义级别的日志信息。
(8)绑定参数
logger.bind()方法用于绑定参数到日志记录器中,这些参数可以在日志信息中引用。例如,我们可以使用logger.bind()方法绑定一个user_id参数,并在日志信息中引用该参数,示例如下:
from loguru import logger
# 绑定一个user_id参数
logger = logger.bind(user_id=12345)
# 输出带有user_id参数的日志信息
logger.info("user {user_id} logged in")
在上面的示例中,我们使用logger.bind()方法绑定了一个user_id参数,并使用logger.info()方法输出了一条带有user_id参数的日志信息。
(9)输出日志到socket套接字
from loguru import logger
# 创建一个网络套接字
import socket
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.connect(('localhost', 9000))
# 将日志记录器的输出发送到网络套接字中
logger.add(sock.sendall)
# 输出日志信息
logger.info("hello world")
在上面的示例中,我们创建了一个网络套接字,并使用logger.add()方法将日志记录器的输出发送到该套接字中。接着,我们使用logger.info()方法输出了一条日志信息,该信息将被发送到网络套接字中。
【发文章不易,请多多关注、点赞、留言、下载支持!谢谢】