【参考资料】
关于KMP算法,大家可以查阅博客园的这篇文章:
这篇解释文章相当简明,当然july的这篇文章也可以读一读:
【算法原理】
这里抄录第一篇参考资料的例子:
下面,我用自己的语言,试图写一篇比较好懂的 KMP 算法解释。
1.
首先,字符串"BBC ABCDAB ABCDABCDABDE"的第一个字符与搜索词"ABCDABD"的第一个字符,进行比较。因为B与A不匹配,所以搜索词后移一位。
2.
因为B与A不匹配,搜索词再往后移。
3.
就这样,直到字符串有一个字符,与搜索词的第一个字符相同为止。
4.
接着比较字符串和搜索词的下一个字符,还是相同。
5.
直到字符串有一个字符,与搜索词对应的字符不相同为止。
6.
这时,最自然的反应是,将搜索词整个后移一位,再从头逐个比较。这样做虽然可行,但是效率很差,因为你要把"搜索位置"移到已经比较过的位置,重比一遍。
7.
一个基本事实是,当空格与D不匹配时,你其实知道前面六个字符是"ABCDAB"。KMP 算法的想法是,设法利用这个已知信息,不要把"搜索位置"移回已经比较过的位置,继续把它向后移,这样就提高了效率。
8.
怎么做到这一点呢?可以针对搜索词,算出一张《部分匹配表》(Partial Match Table)。这张表是如何产生的,后面再介绍,这里只要会用就可以了。
9.
已知空格与D不匹配时,前面六个字符"ABCDAB"是匹配的。查表可知,最后一个匹配字符B对应的"部分匹配值"为2,因此按照下面的公式算出向后移动的位数:
移动位数 = 已匹配的字符数 - 对应的部分匹配值
因为 6 - 2 等于4,所以将搜索词向后移动 4 位。
10.
因为空格与C不匹配,搜索词还要继续往后移。这时,已匹配的字符数为2("AB"),对应的"部分匹配值"为0。所以,移动位数 = 2 - 0,结果为 2,于是将搜索词向后移 2 位。
11.
因为空格与A不匹配,继续后移一位。
12.
逐位比较,直到发现C与D不匹配。于是,移动位数 = 6 - 2,继续将搜索词向后移动 4 位。
13.
逐位比较,直到搜索词的最后一位,发现完全匹配,于是搜索完成。如果还要继续搜索(即找出全部匹配),移动位数 = 7 - 0,再将搜索词向后移动 7 位,这里就不再重复了。
14.
下面介绍《部分匹配表》是如何产生的。
首先,要了解两个概念:"前缀"和"后缀"。 "前缀"指除了最后一个字符以外,一个字符串的全部头部组合;"后缀"指除了第一个字符以外,一个字符串的全部尾部组合。
15.
"部分匹配值"就是"前缀"和"后缀"的最长的共有元素的长度。以"ABCDABD"为例,
-"A"的前缀和后缀都为空集,共有元素的长度为0;
-"AB"的前缀为[A],后缀为[B],共有元素的长度为0;
-"ABC"的前缀为[A, AB],后缀为[BC, C],共有元素的长度0;
-"ABCD"的前缀为[A, AB, ABC],后缀为[BCD, CD, D],共有元素的长度为0;
-"ABCDA"的前缀为[A, AB, ABC, ABCD],后缀为[BCDA, CDA, DA, A],共有元素为"A",长度为1;
-"ABCDAB"的前缀为[A, AB, ABC, ABCD, ABCDA],后缀为[BCDAB, CDAB, DAB, AB, B],共有元素为"AB",长度为2;
-"ABCDABD"的前缀为[A, AB, ABC, ABCD, ABCDA, ABCDAB],后缀为[BCDABD, CDABD, DABD, ABD, BD, D],共有元素的长度为0。
16.
"部分匹配"的实质是,有时候,字符串头部和尾部会有重复。比如,"ABCDAB"之中有两个"AB",那么它的"部分匹配值"就是2("AB"的长度)。搜索词移动的时候,第一个"AB"向后移动 4 位(字符串长度-部分匹配值),就可以来到第二个"AB"的位置。
===================================抄录完毕=============================================
【代码实现】
既然已经知道原理了,那么用代码实现也就不会是问题。
下面我将java版的kmp算法(有点简陋)贴出来:
package kmp;
import java.util.ArrayList;
public class KMPTest {
public static void main(String[] args){
KMPTest ktest=new KMPTest("BBC ABCDAB ABCDABCDABDE", "ABCDABD");
ktest.debugNextArr();
int theLoc=ktest.getIndexOfStr();
System.out.println();
System.out.println("匹配位置在:"+theLoc);
}
private int[] _nextArr=null;
private String _originStr=null;
private String _moduleStr=null;
private int[] _resultArr=null;
public KMPTest(String originStr,String moduleStr){
_originStr=originStr;
_moduleStr=moduleStr;
_nextArr=caculate_nextArr();
}
/**
* 计算next 数组的值。
* */
private int[] caculate_nextArr(){
if(_moduleStr==null||_moduleStr.length()==0){
return null;
}
int[] theNextArr=new int[_moduleStr.length()];
for(int i=0;i<_moduleStr.length();i++){
if(i==0){
theNextArr[i]=0;
}
else if(i==1){
if(_moduleStr.charAt(0)==_moduleStr.charAt(1)){
theNextArr[i]=1;
}else{
theNextArr[i]=0;
}
}
else{
int theLength2=i;
boolean hasEqual=false;
for(int j=theLength2-1;j>=0;j--){
String prefix_str=_moduleStr.substring(0, j+1);
String suffix_str=_moduleStr.substring(theLength2-j,theLength2+1);
if(prefix_str.endsWith(suffix_str)){
hasEqual=true;
theNextArr[i]=prefix_str.length();
break;
}
else{
}
}
if(hasEqual==false){
theNextArr[i]=0;
}
}
}
//---
return theNextArr;
}
public void debugNextArr(){
if(_nextArr!=null){
System.out.println("next array的值:");
for(int tmp:_nextArr){
System.out.print(tmp+" ");
}
}
}
public int getIndexOfStr(){
if(_moduleStr==null||_moduleStr.length()<=0){
return -1;
}
if(_originStr==null||_originStr.length()<=0){
return -1;
}
if(_originStr.length()<_moduleStr.length()){
return -1;
}
int res=-1;
int totalLength=_originStr.length();
boolean flag_end=false;
int origin_loc=0;
int module_loc=0;
while(flag_end==false){
char c_origin=_originStr.charAt(origin_loc);
char c_module=_moduleStr.charAt(module_loc);
boolean needtoGoOn=true;
int childLoc=1;
if(c_origin==c_module){
if(module_loc==_moduleStr.length()-1){
res=origin_loc-module_loc;
break;
}
else{
origin_loc++;
module_loc++;
}
}
else{
if(module_loc==0){
origin_loc++;
module_loc=0;
if(origin_loc>=totalLength){
break;
}
}
else{
if(module_loc<=0){
module_loc++;
origin_loc++;
}
else{
int m_callback=_nextArr[module_loc-1];
module_loc=m_callback;}
}
continue;
}
if(origin_loc>=totalLength){
break;
}
}
return res;
}
}