题目大意:
给一张n*n的地图,每个点上有权值,从(1,1)开始走,每次最多可先同一方向走k步停下,要求每次停下点的权值要大于上次停下点的权值,问所有停下点的权值和最大是多少?(要算(1,1)的权值)。
解题思路
因为无论用什么方式走到一个点(x,y),在这以后可以走的点都不会受影响,所以可以用记忆化搜索。
dp[x][y]表示从(x,y)开始走所能得到的最大权值和。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cmath>
#include<queue>
using namespace std;
int getint()
{
int i=0,f=1;char c;
for(c=getchar();(c<'0'||c>'9')&&c!='-';c=getchar());
if(c=='-')f=-1,c=getchar();
for(;c>='0'&&c<='9';c=getchar())i=(i<<3)+(i<<1)+c-'0';
return i*f;
}
const int N=105;
const int fx[4]={-1,0,1,0};
const int fy[4]={0,-1,0,1};
int n,k,ans,a[N][N],dp[N][N];
int dfs(int x,int y)
{
if(dp[x][y]!=-1)return dp[x][y];
dp[x][y]=a[x][y];
for(int i=0;i<4;i++)
{
for(int j=1;j<=k;j++)
{
int dx=x+fx[i]*j,dy=y+fy[i]*j;
if(dx>=1&&dx<=n&&dy>=0&&dy<=n&&a[dx][dy]>a[x][y])
dp[x][y]=max(dp[x][y],a[x][y]+dfs(dx,dy));
}
}
return dp[x][y];
}
int main()
{
//freopen("lx.in","r",stdin);
while(1)
{
memset(dp,-1,sizeof(dp));
ans=0;
n=getint(),k=getint();
if(n==-1)break;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
a[i][j]=getint();
ans=dfs(1,1);
cout<<ans<<'\n';
}
return 0;
}