--------数学问题--------
文章平均质量分 87
Neo__Z
这个作者很懒,什么都没留下…
展开
-
LOJ#6389. 「THUPC2018」好图计数 / Count【生成函数】
传送门解题思路:终于卡过去了…… 这题和求无标号有根树个数的思路差不多,可以先看这里,因为下面一些公式演算会省略中间过程。设大小为 nnn 的好图数目为fnfnf_n,其中连通的数目为gngng_n 注意但n≥2n≥2n\ge 2时,不连通的好图和连通的好图一一对应,即gn=fn/2gn=fn/2g_n=f_n/2考虑生成函数F(x)=∑fixiF(x)=∑fixiF(x)=\...原创 2018-05-24 19:09:01 · 1007 阅读 · 0 评论 -
bzoj5296 [Cqoi2018]破解D-H协议【BSGS】
传送门解题思路:BSGS模板题。#include<bits/stdc++.h>#define ll long longusing namespace std;int getint(){ int i=0,f=1;char c; for(c=getchar();(c!='-')&&(c<'0'||c>'9');c=getc...原创 2018-05-03 12:10:34 · 255 阅读 · 0 评论 -
BJ模拟 and【容斥】
题目描述:解题思路:#include<bits/stdc++.h>using namespace std;int getint(){ int i=0,f=1;char c; for(c=getchar();c!='-'&&(c<'0'||c>'9');c=getchar()); if(c=='-')f=-...原创 2018-04-21 17:11:47 · 277 阅读 · 0 评论 -
ZJOI模拟 幂【CRT+Pollard-Rho】
题目大意:给定正整数nnn,求最小的正整数kkk满足对于任意正整数aaa,ank≡a(modn)ank≡a(modn)a^{n^k}\equiv a (\bmod n),无解则输出-1。n≤1018n≤1018n\le 10 ^{18}解题思路:首先如果nnn有平方因子p2p2p^2,那么令a=pa=pa=p,则pnkmodnpnkmodnp^{n ^k}\bmod n一定是p2p2p...原创 2018-04-24 21:09:15 · 189 阅读 · 0 评论 -
ZJOI模拟 绝对伏特加【数学期望+组合数学+生成函数】
题目描述:AlanAlanAlan在玩骰子游戏,AlanAlanAlan会玩nn n 轮骰子,每轮的数值在[1,K][1,K] [1,K] 中随机出现。记aiaia _i表示nn n 轮投掷中,数值ii i 出现的次数,求aF1∗aF2∗……aFLa1F∗a2F∗……aLFa_1^F*a_2^F*……a_L^F的期望。答案对2003取模。 1≤n,k≤109,L∗F≤500001≤n,k≤1...原创 2018-04-19 21:31:50 · 411 阅读 · 0 评论 -
BJ模拟 简单粗暴的题目【二项式定理】
解题思路:已知n,kn,kn,k和长度为n的数列aiaia_i,对每个1≤i≤n1≤i≤n1\le i\le n,求∑j=1i(∑l=jia[l])k∑j=1i(∑l=jia[l])k\sum\limits_{j=1}^i(\sum\limits_{l=j}^{i}a[l])^k。 1≤n≤500000,1≤k≤1001≤n≤500000,1≤k≤1001\le n\le 500000,1\...原创 2018-04-13 11:09:53 · 372 阅读 · 0 评论 -
bzoj5250 九省联考 秘密袭击【树上背包+拉格朗日插值+线段树合并】
解题思路:第一个想法是枚举第kkk大的值,把大于的记为1,小于的记为0,问题就转化为树上联通块大小等于kkk的个数。稍微转化一下,我们统计树上联通块第kkk大大等于iii的个数,不妨记为aiaia_i,那么 ans=∑i=1Wi(ai−ai+1)ans=∑i=1Wi(ai−ai+1)ans=\sum\limits_{i=1}^Wi(a_i-a_{i+1})而因为这样计算每个大等于ii...原创 2018-04-18 17:17:11 · 800 阅读 · 0 评论 -
BJ模拟 Bash Plays with Functions【积性函数】
题目描述:Bash定义函数f0(n)f0(n) f_0(n)表示有序正整数对(p,q)(p,q) (p,q)使得p⋅q=np⋅q=np⋅q=n 且gcd(p,q)=1gcd(p,q)=1 gcd(p,q)=1 Bash觉得计算 f0(n)f0(n) f_0(n) 太简单了,于是它定义了一系列的函数: fr+1(n)=∑u⋅v=nfr(u)+fr(v)2fr+1(n)=∑u⋅v=nfr(...原创 2018-04-11 14:26:11 · 335 阅读 · 1 评论 -
SCOI2018 D1T2 Numazu的蜜柑【二次剩余】
题目大意:给定一棵有nnn个节点的树,每个节点有点权aiaia_i给出p,A,Bp,A,Bp,A,B,问有多少点对(u,v)(u,v)(u,v)满足: 1.vvv是uuu的祖先。 2.a2u+Aauav+Ba2v≡0(modp)au2+Aauav+Bav2≡0(modp)a_u^2+Aa_ua_v+Ba_v^2\equiv0(\bmod p)n≤100000,p∈P,3≤p≤1016,...原创 2018-04-11 11:18:51 · 912 阅读 · 0 评论 -
BJ模拟 计数【组合数学】
题目大意:问n1个A,n2个B,n3个C,n4个D可以组成多少种排列,使得相邻字母不同。 n1,n2,n3,n4<=1000;解题思路:设fifif_i表示A,B组成i段合法序列的方案数,gigig_i表示C,D组成i段合法序列的方案数(每段有顺序关系),则ans=∑n1+n2i=0fi(gi−1+2gi+gi+1)ans=∑i=0n1+n2fi(gi−1+2gi+gi+1)a...原创 2018-04-10 17:05:07 · 229 阅读 · 0 评论 -
bzoj3811: 玛里苟斯【线性基】
Description魔法之龙玛里苟斯最近在为加基森拍卖师的削弱而感到伤心,于是他想了一道数学题。 S 是一个可重集合,S={a1,a2,…,an}。 等概率随机取 S 的一个子集 A={ai1,…,aim}。 计算出 A 中所有元素异或 x, 求 x^k 的期望。Input第一行两个正整数 n, k。 以下 n 行每行一个整数,表示 ai。Output如果结果...原创 2018-04-02 21:53:39 · 284 阅读 · 0 评论 -
bzoj4944: [Noi2017]泳池【概率dp+特征多项式】
题目大意:有一个1001×n1001×n1001×n的的网格,每个格子有qqq的概率是安全的,1−q1−q1−q的概率是危险的。 定义一个矩形是合法的当且仅当: 1.这个矩形中每个格子都是安全的 2.必须紧贴网格的下边界 问你最大的合法子矩形大小恰好为kkk的概率是多少。解题思路:首先求恰好为kkk的概率一般转化为求≤k≤k\le k的概率减去≤k−1≤k−1\le k-1...原创 2018-04-09 20:05:48 · 677 阅读 · 0 评论 -
bzoj4570: [Scoi2016]妖怪【凸包+对勾函数最小值】
Description邱老师是妖怪爱好者,他有n只妖怪,每只妖怪有攻击力atk和防御力dnf两种属性。邱老师立志成为妖怪大师,于 是他从真新镇出发,踏上未知的旅途,见识不同的风景。环境对妖怪的战斗力有很大影响,在某种环境中,妖怪可 以降低自己k×a点攻击力,提升k×b点防御力或者,提升自己k×a点攻击力,降低k×b点防御力,a,b属于正实数 ,k为任意实数,但是atk和dnf必须始终非负...原创 2018-03-26 21:04:46 · 351 阅读 · 0 评论 -
bzoj5297 [Cqoi2018]社交网络【矩阵树定理】
传送门解题思路:就是有向图的生成树定理,注意与无向图的不同。 1.题目是求反向树形图,基尔霍夫矩阵为(入度矩阵-邻接矩阵) 2.求余子式只能删去根节点所在行和列。#include<bits/stdc++.h>using namespace std;int getint(){ int i=0,f=1;char c; for(c=getchar()...原创 2018-05-03 13:58:42 · 256 阅读 · 0 评论 -
bzoj5298: [Cqoi2018]交错序列【二项式定理+动态规划+矩阵快速幂】
传送门解题思路:xayb=(n−y)ayb=∑i=0a(ai)ni(−1)a−iya+b−ixayb=(n−y)ayb=∑i=0a(ai)ni(−1)a−iya+b−ix^ay^b=(n-y)^ay^b=\sum\limits_{i=0}^a\binom{a}{i}n^i(-1)^{a-i}y^{a+b-i}设f[k][i][0/1]f[k][i][0/1]f[k][i][0/1]表示...原创 2018-05-03 14:12:40 · 325 阅读 · 0 评论 -
loj#2542. 「PKUWC 2018」随机游走
传送门解题思路:Min-Max容斥真神奇……然而不知如何证明……设 Max(s)Max(s)Max(s) 表示集合里最晚被访问的节点被访问的期望步数(也就是访问所有节点的期望步数)。设 Min(s)Min(s)Min(s) 表示集合里最早被访问的节点被访问的期望步数(也就是第一次访问到集合里的节点的期望步数)那么 Max(s)=∑T∈S(−1)|T|+1Min(T)Ma...原创 2018-05-29 17:08:37 · 791 阅读 · 0 评论 -
loj#2541. 「PKUWC 2018」猎人杀【容斥+概率dp+生成函数+分治FFT】
传送门解题思路:思路巧妙……原题中每轮概率都在变化,一脸不可做,但注意到对问题的转化: 我们杀人后将其打上标记,但还是可以以他为目标重复选,直到选到一个未打标记的人。 这和原问题等价,而且这样每轮选中每人的概率都不变。考虑容斥,枚举强制在1号后面死的人,即1号至少在这些人前面,令 A=∑wiA=∑wiA=\sum w_i,SSS 为枚举到的人的 wiwiw_i 之和,ttt 为...原创 2018-05-29 15:14:59 · 1752 阅读 · 0 评论 -
SPOJ PT07D :Let us count 1 2 3 【树的计数】
传送门解题思路:四种树的计数方式: 1.有标号无根树:根据prufer序列可知是nn−2nn−2n^{n-2}2.有标号有根树:一棵有标号无根树以每个节点为根 ,所以是nn−1nn−1n^{n-1}3.无标号有根树:设 fifif_i 表示树的大小为 iii 的方案数,其生成函数是 F(x)=∑fixiF(x)=∑fixiF(x)=\sum f_i x^i 考虑到一棵无...原创 2018-05-24 15:26:07 · 891 阅读 · 0 评论 -
bzoj5330: [Sdoi2018]反回文串【莫比乌斯反演+Miller-Robin】
Description“回文串什么的最讨厌了……” 小Q讨厌任何形式的回文串: (1)如果一个字符串从左往右读和从右往左读是一样的,那么小Q讨厌它;例如aa和aba (2)对于一个字符串来说,若将某个前缀子串移除并拼接到字符串的尾部,能得到一个小Q讨厌的字符串, 那么小Q也会讨厌原来的这个字符串;例如aab和baa。 现在问题来了,如果任意字符串只可以由k种已知的字符组成(也就是说字...原创 2018-05-25 18:49:32 · 560 阅读 · 0 评论 -
bzoj3817: Sum【类欧几里得算法】
题目大意:给出T≤1e4T≤1e4T\le1e4组询问,对于每组询问,给定n≤1e9,R≤1e4n≤1e9,R≤1e4n\le 1e9,R\le 1e4,求: ∑i=1n(−1)⌊iR√⌋∑i=1n(−1)⌊iR⌋\sum\limits_{i=1}^n(-1)^{\lfloor i\sqrt{R}\rfloor}解题思路:设r=R−−√r=Rr=\sqrt{R},则⌊ir⌋⌊ir...原创 2018-04-28 19:57:00 · 267 阅读 · 0 评论 -
BJ模拟 超级绵羊异或【类欧几里得算法】
题目描述:有t≤10000t≤10000t\le 10000组询问,每组询问给出n,a,b≤1e9n,a,b≤1e9n,a,b\le 1e9,求: a⊕(a+b)⊕(a+2b)……⊕(a+(n−1)b)a⊕(a+b)⊕(a+2b)……⊕(a+(n−1)b)a\oplus(a+b)\oplus(a+2b)……\oplus(a+(n-1)b)解题思路:考虑直线下整点个数,那么异或和的...原创 2018-04-28 15:24:15 · 244 阅读 · 0 评论 -
BJ模拟 生日礼物【NTT+斯特林数+组合数学】
题目描述:今天是Jane的生日。Alice和Bob都有一些糖果,于是这两个人就去买了N个白色的盒子去包装这些糖果作为Jane的生日礼物。他们将随机地把这些盒子分成两堆,一堆给Alice,一堆给Bob(每堆至少有一个盒子)。我们知道Alice有 N1 个不同的糖果,Bob有 N2 个相同的糖果(由于Bob很懒,所以他直接买了相同的糖果),然后Alice买的糖果和Bob买的糖果是完全不一样的。...原创 2018-04-28 11:56:04 · 257 阅读 · 0 评论 -
Codeforces908H. New Year and Boolean Bridges【并查集+强联通+FWT】
题目大意:有一个n个点的有向图。 定义i能到达j时f(i,j)=1,否则f(i,j)=0。 对于每个点对(i,j),给定以下三个条件中的某一个为真: (1) f(i,j) and f(j,i)=1; (2) f(i,j) or f(j,i)=1; (3) f(i,j) xor f(j,i)=1。 求满足条件时的最小边数。 1<=n<=47。解题思路:等价于满足...原创 2018-05-18 18:35:01 · 405 阅读 · 0 评论 -
BJ模拟 等差数列【分块+FFT】
题目描述:给定nnn个整数a1,a2,a3,...,ana1,a2,a3,...,ana_1,a_2,a_3,...,a_n,求有多少个三元组(i,j,k)(i,j,k)(i,j,k)满足1≤i<j<k≤n1≤i<j<k≤n1≤iaj−ai=ak−ajaj−ai=ak−aja_j−a_i=a_k−a_j 。 1≤n≤100000,1≤ai≤300001≤n≤10000...原创 2018-05-05 11:59:13 · 365 阅读 · 0 评论 -
bzoj5300: [Cqoi2018]九连环【FFT+高精度】
传送门解题思路:容易发现fi=fi−1+2fi−2+1=2fi−1+(i%2)fi=fi−1+2fi−2+1=2fi−1+(i%2)f_i=f_{i-1}+2f_{i-2}+1=2f_{i-1}+(i\%2),但还不够。 又发现fi=⌊2i+13⌋fi=⌊2i+13⌋f_i=\lfloor\frac{2^{i+1}}{3}\rfloor,直接FFT+高精度即可。#include&...原创 2018-05-04 16:00:02 · 426 阅读 · 0 评论 -
TopCoder SRM697 div1 hard【prufer序列】
题目大意:有n≤2000n≤2000n\le 2000个城市,每个城市有个权值wiwiw_i,任意两个城市之间的道路数有wi∗wjwi∗wjw_i*w_j条。对于每种生成树,设每个点的度数为didid_i,其权值定义为∏di∏di\prod d_i。问所有无根生成树的权值和。答案对109+7109+710^9+7取模。 解题思路:主要说一下思路和推导过程。 考虑生成树中的一条边 (i...原创 2018-05-17 11:02:22 · 315 阅读 · 0 评论 -
bzoj3309: DZY Loves Math【莫比乌斯反演+积性函数】
Description对于正整数n,定义f(n)为n所含质因子的最大幂指数。例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0。 给定正整数a,b,求sigma(sigma(f(gcd(i,j)))) (i=1..a, j=1..b)。Input第一行一个数T,表示询问数。 接下来T行,每行两个数a,b,表示一个询问。O...原创 2018-05-10 12:59:59 · 275 阅读 · 0 评论 -
bzoj4568: [Scoi2016]幸运数字【线性基+倍增】
DescriptionA 国共有 n 座城市,这些城市由 n-1 条道路相连,使得任意两座城市可以互达,且路径唯一。每座城市都有一个 幸运数字,以纪念碑的形式矗立在这座城市的正中心,作为城市的象征。一些旅行者希望游览 A 国。旅行者计划 乘飞机降落在 x 号城市,沿着 x 号城市到 y 号城市之间那条唯一的路径游览,最终从 y 城市起飞离开 A 国。 在经过每一座城市时,游览者就会有机会...原创 2018-03-24 18:57:22 · 230 阅读 · 0 评论 -
bzoj3157&&3516&&4126 国王奇遇记【拉格朗日差值+高阶差分】
DescriptionInput共一行包括两个正整数N和M。Output共一行为所求表达式的值对10^9+7取模的值。Sample Input5 3Sample Output36363HINT1<=N<=10^9,1<=M<=500000解题思路:说一个不仅能求原题,还能求其拓展形式∑i=0nf(i...原创 2018-03-17 19:40:06 · 668 阅读 · 2 评论 -
BJ模拟 装饰地板【状压dp+特征多项式优化矩阵快速幂】
题目大意:给一个m∗nm∗nm*n的地板,有s1s1s1种1×21×21\times2的横地砖,s2s2s2种2×12×12\times 1的竖地砖,问有多少种铺满的方式,对998244353取模。 (m≤6,n≤102501,s1,s2≤1e9)(m≤6,n≤102501,s1,s2≤1e9)(m\le 6,n\le 10^{2501},s1,s2\le 1e9)解题思路:看到...原创 2018-03-15 20:18:22 · 329 阅读 · 0 评论 -
bzoj1061、3265 志愿者招募【单纯形法】
解题思路:如果不清楚单纯形法的可以看这里: http://blog.sina.com.cn/s/blog_4b1046f80101m9ou.html 题目很像标准单纯形形式但求的是最大值,且所有限制条件都是大于等于。 根据对偶原理,我们只需要把单纯形法整个ABC矩阵转置再求单纯形即是答案。这是1061的代码,3265的改一下输入即可。#include<bits/stdc++.h>using原创 2017-12-28 11:59:08 · 316 阅读 · 0 评论 -
TC srm518 Nim【动态规划+FWT】
题目大意:求符合以下条件的序列个数: 1:长度为K 2:每个元素大小不超过L 3:每个数都是质数 4:所有数异或和为0 K≤109,L≤50000K\le10^9,L\le 50000 答案对109+710^9+7取模;解题思路:我们设f[i][j]表示序列长度为i,异或和为j的方案数,那么 f[i][x ^ y]=f[i-1][x] * f[1][y]。可以发现这个式子是符合FWT原创 2017-12-27 15:20:00 · 593 阅读 · 0 评论 -
快速沃尔什变换(FWT)讲解+模板
能看到这篇博客的人,一定知道FWT是干什么的。(什么?你不知道?) 没事,这里有picks讲FWT的一篇博客。先点进去看一看。如果你看懂了,那么恭喜你。如果你跟我一样看不懂,那么请继续往下看。这里的A和B都是什么呢?其实它们是一个多维的向量(如果你不知道向量是什么,就把它当成数组),下标从0开始。 其中,A=<a0,a1,...,a2k−1>B=<b0,b1,...,b2k−1>C=A@B转载 2017-12-27 14:07:29 · 766 阅读 · 0 评论 -
bzoj2820 YY的GCD【莫比乌斯反演】
解题思路:题目大意即为求:∑p∈P∑i=1n∑j=1m[gcd(i,j)=p]\sum\limits _{p\in P}\sum\limits_{i=1}^n\sum\limits_{j=1}^m[gcd(i,j)=p]原式=∑p∈P∑i=1np∑j=1mp[gcd(i,j)=1]=\sum\limits _{p\in P}\sum\limits_{i=1}^{\frac{n}{p}}\sum\li原创 2017-12-07 22:04:09 · 406 阅读 · 2 评论 -
poj1286 Necklace of Beads【polya定理】
题目大意:用红蓝绿三色共n个珠子串成项链,求旋转和翻转后仍不一样的串法种数?解题思路:首先说一下polya定理:设G是n个对象的一个置换群设G是n个对象的一个置换群{p1,p2……,pkp_1,p_2……,p_k}(即所有的变换方式),用m种颜色对这n个对象染色,则不同的方案数为(即所有的变换方式),用m种颜色对这n个对象染色,则不同的方案数为l=1|G|(mc(p1)+mc(p2)+……+mc(p原创 2017-12-15 08:25:57 · 383 阅读 · 0 评论 -
bzoj2982 combination【Lacus定理+线性求逆元】
解题思路:这道题只求一个Cmn(modC_n^m(mod p),pp),p是质数,运用Lacus定理,我们可以在O(logpn)O(log_pn)的时间内求出。Lacus定理: 我们令n=sp+q,m=tp+r.(q,r≤p)n=sp+q , m=tp+r .(q ,r ≤p) 那么有:Ctp+rsp+q≡Cts∗Crq(modC_{sp+q}^{tp+r}\equiv C_s^t*C_q^r(原创 2017-12-06 10:30:37 · 309 阅读 · 0 评论 -
bzoj3667 Rabin-Miller算法【Rabin-Miller+pollard_rho】
解题思路:首先说一下Rabin-Miller素数判定算法。定理一:假如p是质数,且(a,p)=1,那么ap−1≡1(modp)。即假如p是质数,且a,p互质,那么a的(p−1)次方除以p的余数恒等于1。(费马小定理)定理一:假如p是质数,且(a,p)=1,那么a^{p-1}≡1(mod p)。即假如p是质数,且a,p互质,那么a的(p-1)次方除以p的余数恒等于1。(费马小定理)该定理的逆命题是不一原创 2017-12-05 11:30:53 · 436 阅读 · 1 评论 -
bzoj2190 仪仗队【欧拉函数+线性筛】
解题思路:我们以左下角为原点,建立直角坐标系。 那么一个人(x,y)(x,y)能被看到,当且仅当x,yx,y互质。 也可以看做求从原点开始有多少个不共线的向量。如果d=gcd(x,y)≠1d=gcd(x,y)\ne 1,那么它会和(xd,yd)(\frac{x}{d},\frac{y}{d})共线。 如果我们以y=xy=x作为对称轴,那么两边情况相等,而(1,0),(0,1),(1,1)(1,原创 2017-12-04 15:16:04 · 347 阅读 · 0 评论 -
51nod 1244 莫比乌斯函数之和【杜教筛】
解题思路:像这种求积性函数前缀和的题,可以用杜教筛来做,时间复杂度为O(n23)O(n^{\frac{2}{3}}),是一种基于分治和记忆化搜索的方法。 具体可见:http://blog.csdn.net/skywalkert/article/details/50500009 注意一定要把求得的答案记忆化才能保证复杂度,本人TLE了半天不知为何。#include<cstdio>#include原创 2017-12-12 11:03:45 · 307 阅读 · 0 评论 -
bzoj5020 在美妙的数学王国中畅游【LCT+泰勒展开】
解题思路:题目后貌似还有一段提示: 考试的时候完全看不懂它给的泰勒展开式,只打了可以暴力走和x=1x=1的部分,就是LCT维护路径和。考试后看了题解,原来它的意思就是取x0=0x_0=0,f(x)f(x)可以化成多项式形式,每项系数就是fi(0)i!。n=11\frac{f^i(0)}{i!}。n=11精度就够了,然后Splay维护每一项系数的和,询问时每项乘以xix^i就行了。对导数不熟悉的原创 2017-12-20 19:17:31 · 450 阅读 · 0 评论