NOIP模拟 回文子串【动态规划】

本文介绍了一种求解两个字符串合并后的最长回文子串的算法,通过四维动态规划实现,适用于字符串长度不超过50的情况。文章提供了完整的代码实现。
摘要由CSDN通过智能技术生成
题目大意:

给定两个长度不超过50的大写字母字符串s,t,求他们的所有并字符串中的最长回文子串长度。
如:“CLEVER”和“JAVA”的一个并字符串为“CLJEAVVAER”,其最长回文子串为“EAVVAE”,长度为6。

解题思路:

考试时只想到四维dp就不知道怎么做了……蒟蒻。

设想分别从两边开始取到中间合并。
设dp[l][r][L][R]表示表示s串从左往右取到s[l],从右往左取到s[r],t串从左往右取到t[L],从右往左取到t[R]时取得的最长回文子串的长度,则:
if(s[l]==s[r])dp[l][r][L][R]=dp[l-1][r+1][L][R]+2;
if(s[l]==t[R])dp[l][r][L][R]=dp[l-1][r][L][R+1]+2;
if(t[L]==t[R])dp[l][r][L][R]=dp[l][r][L-1][R+1]+2;
if(t[L]==s[r])dp[l][r][L][R]=dp[l][r+1][L-1][R]+2;
四个值取最大值。
这是回文长度为偶数的情况,奇数的话只用最后在中间随便插入一个字符即可。
注意两个字符串都可能有从一边不取的情况,所以y要从0枚举到sn(tn)+1,而初始时可将s[0],s[sn+1],t[0],t[tn+1]赋为不同的字符避免错误。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#define ll long long
using namespace std;

int getint()
{
    int i=0,f=1;char c;
    for(c=getchar();(c<'0'||c>'9')&&c!='-';c=getchar());
    if(c=='-')f=-1,c=getchar();
    for(;c>='0'&&c<='9';c=getchar())i=(i<<3)+(i<<1)+c-'0';
    return i*f;
}

const int N=55;
char s[N],t[N];
int sn,tn,ans,dp[N][N][N][N];

int main()
{
    //freopen("palin.in","r",stdin);
    //freopen("palin.out","w",stdout);
    int l,r,L,R;
    scanf("%s%s",s+1,t+1);
    sn=strlen(s+1),tn=strlen(t+1);
    s[0]='!',s[sn+1]='@',t[0]='#',t[tn+1]='$';
    for(l=0;l<=sn;l++)
        for(r=sn+1;r>l;r--)
            for(L=0;L<=tn;L++)
                for(R=tn+1;R>L;R--)
                {
                    int x=dp[l][r][L][R];
                    if(s[l]==s[r])x=max(x,dp[l-1][r+1][L][R]+2);
                    if(s[l]==t[R])x=max(x,dp[l-1][r][L][R+1]+2);
                    if(t[L]==t[R])x=max(x,dp[l][r][L-1][R+1]+2);
                    if(t[L]==s[r])x=max(x,dp[l][r+1][L-1][R]+2);
                    dp[l][r][L][R]=x;
                }
    for(l=0;l<=sn;l++)
        for(L=0;L<=tn;L++)
        {
            ans=max(ans,dp[l][l+1][L][L+1]);
            ans=max(ans,dp[l][l+2][L][L+1]+1);
            ans=max(ans,dp[l][l+1][L][L+2]+1);
        }
    cout<<ans<<'\n';
    return 0;
}
最长回文子串问题可以使用动态规划来解决。 动态规划的思路是利用已知的子问题的解来求解更大规模的问题。对于回文串,我们可以定义一个二维数组 dp[i][j],表示字符串从位置 i 到 j 是否是回文串。那么,如果 dp[i][j] = true,则表示从 i 到 j 的字符串是回文串。 根据回文串的定义,我们可以得到递推关系式: - 如果 s[i] == s[j],并且 s[i+1] 到 s[j-1] 是一个回文串,那么 s[i] 到 s[j] 也是一个回文串。即:如果 s[i] == s[j] 并且 j - i <= 2 或者 dp[i+1][j-1] = true,则 dp[i][j] = true。 - 如果 s[i] != s[j],那么 s[i] 到 s[j] 是一个回文串。即:如果 s[i] != s[j],则 dp[i][j] = false。 根据递推关系式,我们可以使用动态规划的方式求解最长回文子串: 1. 初始化二维数组 dp 的对角线上的元素为 true,表示单个字符一定是回文串。 2. 从字符串的末尾开始遍历,从右下角开始计算 dp 数组的其他位置。 3. 根据递推关系式计算 dp 数组的其他位置。 4. 在计算过程中记录最长回文子串的起始位置长度。 5. 根据最长回文子串的起始位置长度截取原始字符串,即可得到最长回文子串。 下面是使用动态规划求解最长回文子串的代码示例(使用 Python 实现): ```python def longestPalindrome(s): n = len(s) dp = [[False] * n for _ in range(n)] start = 0 max_len = 1 # 初始化对角线 for i in range(n): dp[i][i] = True # 从右下角开始计算 dp 数组 for i in range(n-1, -1, -1): for j in range(i+1, n): if s[i] == s[j] and (j - i <= 2 or dp[i+1][j-1]): dp[i][j] = True if j - i + 1 > max_len: max_len = j - i + 1 start = i return s[start:start+max_len] ``` 这样,调用 `longestPalindrome` 函数并传入一个字符串,即可得到该字符串的最长回文子串
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值