bzoj1069 最大土地面积【凸包+旋转卡壳】

解题思路:

讲真,这题数据有点水,要是只给一个凹四边形就gg了。
所以我们假设求出来的是个凸包……。
考虑O( n2 )枚举对角线,那么就是求以对角线为底上下两个最大的三角形,可以采用旋转卡壳的思想来做,注意到随着对角线转动,最优顶点也在同向转动,所以直接跳指针即可。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cmath>
#include<ctime>
#include<queue>
#include<vector>
#include<set>
#include<map>
using namespace std;

const int N=2005;
const double eps=1e-8;
struct point
{
    double x,y;
    point(){}
    point(double _x,double _y):
        x(_x),y(_y){}
    inline friend point operator - (const point &a,const point &b)
    {return point(a.x-b.x,a.y-b.y);}
    inline friend double operator * (const point &a,const point &b)
    {return a.x*b.y-a.y*b.x;}
    inline double dis()
    {return x*x+y*y;}
}p[N],stk[N];
int n,top;

inline bool cmp(const point &a,const point &b)
{
    double det=(a-p[1])*(b-p[1]);
    if(det)return det>0;
    return (a-p[1]).dis()<(b-p[1]).dis();
}

void graham()
{
    int id=1;
    for(int i=2;i<=n;i++)
        if(p[i].x<p[id].x||p[i].x==p[id].x&&p[i].y<p[id].y)id=i;
    swap(p[id],p[1]);
    sort(p+2,p+n+1,cmp);
    top=-1;
    for(int i=1;i<=n;i++)
    {
        while(top>1&&(p[i]-stk[top])*(stk[top]-stk[top-1])>-eps)top--;
        stk[++top]=p[i];
    }
    top++;
}

void solve()
{
    double ans=0;
    for(int i=0;i<top;i++)
    {
        int d=i,u=(i+1)%top;
        for(int j=i+1;j<=min(i+top-1,top-1);j++)
        {
            double a1=abs((stk[d]-stk[i])*(stk[d]-stk[j]));
            double a2=abs((stk[u]-stk[i])*(stk[u]-stk[j]));
            while((d+1)%top!=j&&abs((stk[(d+1)%top]-stk[i])*(stk[(d+1)%top]-stk[j]))>=a1)
                d=(d+1)%top,a1=abs((stk[d]-stk[i])*(stk[d]-stk[j]));
            while((u+1)%top!=i&&abs((stk[(u+1)%top]-stk[i])*(stk[(u+1)%top]-stk[j]))>=a2)
                u=(u+1)%top,a2=abs((stk[u]-stk[i])*(stk[u]-stk[j]));
            ans=max(ans,a1+a2);
        }
    }
    ans*=0.5;
    printf("%.3f",ans); 
}

int main()
{
    //freopen("lx.in","r",stdin);
    //freopen("lx.out","w",stdout);
    scanf("%d",&n);
    for(int i=1;i<=n;i++)
        scanf("%lf%lf",&p[i].x,&p[i].y);
    graham();
    solve();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值