SGU278 Fuel【凸包】

题目大意:

有n种燃料,每种有三个属性: ai,bi,ci a i , b i , c i
给定 A,B A , B ,要求 aimiA,bimiB ∑ a i m i ≤ A , ∑ b i m i ≤ B ,使得 cimi ∑ c i m i 最大, mi m i 可以为实数。

解题思路:

先将四个变量转为三个:
xi=cimi,ai=aici,bi=bici x i = c i m i , a i = a i c i , b i = b i c i ,即增加1单位 c c 要消耗多少a,b
那么有 aixiA,bixiB ∑ a i x i ≤ A , ∑ b i x i ≤ B ,求 xi ∑ x i 最大。
即是求一种混合燃料 (a,b) ( a , b ) ,使 min(A/a,B/b) m i n ( A / a , B / b ) 最大。

类似于bzoj1027合金(详解在这里),如果把每种燃料看做平面上的点 (ai,bi) ( a i , b i ) ,那么这些点组成的凸包内部就是可以混合成的燃料。

可以证明,最优选取点为凸包端点或凸包与直线 y=BAx y = B A x 的交点,可以自行思考一下。

#include<bits/stdc++.h>
#define ll long long
using namespace std;

int getint()
{
    int i=0,f=1;char c;
    for(c=getchar();(c!='-')&&(c<'0'||c>'9');c=getchar());
    if(c=='-')f=-1,c=getchar();
    for(;c>='0'&&c<='9';c=getchar())i=(i<<3)+(i<<1)+c-'0';
    return i*f;
}

const int N=75005;
struct point
{
    double x,y;
    point(){}
    point(double _x,double _y):x(_x),y(_y){}
    inline friend point operator - (const point &a,const point &b)
    {return point(a.x-b.x,a.y-b.y);}
    inline friend point operator + (const point &a,const point &b)
    {return point(a.x+b.x,a.y+b.y);}
    inline friend point operator * (const point &a,const double &b)
    {return point(a.x*b,a.y*b);}
    inline friend double operator * (const point &a,const point &b)
    {return a.x*b.y-a.y*b.x;}
    inline double dis(){return x*x+y*y;}
}p[N];
struct line
{
    point st,ed;
    line(){}
    line(point _st,point _ed):st(_st),ed(_ed){}
};
int n,top;
double A,B,c,ans;

inline bool cmp(const point &a,const point &b)
{
    double det=(a-p[1])*(b-p[1]);
    if(det)return det>0;
    return (a-p[1]).dis()<(b-p[1]).dis();
}

void graham()
{
    int id=1;
    for(int i=2;i<=n;i++)
        if((p[i].x<p[id].x)||(p[i].x==p[id].x&&p[i].y<p[id].y))id=i;
    swap(p[1],p[id]);sort(p+2,p+n+1,cmp),top=1;
    for(int i=2;i<=n;i++)
    {
        while(top>=2&&(p[top-1]-p[i])*(p[top]-p[i])<=0)top--;
        p[++top]=p[i];
    }p[n=++top]=p[1];
}

point get_inter(const line &a,const line &b)
{
    double s1=(a.st-b.st)*(b.ed-b.st);
    double s2=(b.ed-b.st)*(a.ed-b.st);
    return a.st+(a.ed-a.st)*(s1/(s1+s2));
}

bool online(const point &a,const line &b)
{
    point t1=b.st-a,t2=b.ed-a;
    return t1.x*t2.x+t1.y*t2.y<=0;
}

int main()
{
    n=getint(),A=getint(),B=getint();
    for(int i=1;i<=n;i++)
    {
        p[i].x=getint(),p[i].y=getint();
        c=getint(),p[i].x/=c,p[i].y/=c;
        ans=max(ans,min(A/p[i].x,B/p[i].y));
    }
    graham();
    for(int i=1;i<n;i++)if(point(A,B)*(p[i+1]-p[i]))
    {
        point t=get_inter(line(point(0,0),point(A,B)),line(p[i],p[i+1]));
        if(online(t,line(p[i],p[i+1])))ans=max(ans,A/t.x);
    }
    printf("%0.6lf\n",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值