题目大意:
有n种燃料,每种有三个属性:
ai,bi,ci
a
i
,
b
i
,
c
i
;
给定
A,B
A
,
B
,要求
∑aimi≤A,∑bimi≤B
∑
a
i
m
i
≤
A
,
∑
b
i
m
i
≤
B
,使得
∑cimi
∑
c
i
m
i
最大,
mi
m
i
可以为实数。
解题思路:
先将四个变量转为三个:
令
xi=cimi,ai=aici,bi=bici
x
i
=
c
i
m
i
,
a
i
=
a
i
c
i
,
b
i
=
b
i
c
i
,即增加1单位
c
c
要消耗多少;
那么有
∑aixi≤A,∑bixi≤B
∑
a
i
x
i
≤
A
,
∑
b
i
x
i
≤
B
,求
∑xi
∑
x
i
最大。
即是求一种混合燃料
(a,b)
(
a
,
b
)
,使
min(A/a,B/b)
m
i
n
(
A
/
a
,
B
/
b
)
最大。
类似于bzoj1027合金(详解在这里),如果把每种燃料看做平面上的点 (ai,bi) ( a i , b i ) ,那么这些点组成的凸包内部就是可以混合成的燃料。
可以证明,最优选取点为凸包端点或凸包与直线 y=BAx y = B A x 的交点,可以自行思考一下。
#include<bits/stdc++.h>
#define ll long long
using namespace std;
int getint()
{
int i=0,f=1;char c;
for(c=getchar();(c!='-')&&(c<'0'||c>'9');c=getchar());
if(c=='-')f=-1,c=getchar();
for(;c>='0'&&c<='9';c=getchar())i=(i<<3)+(i<<1)+c-'0';
return i*f;
}
const int N=75005;
struct point
{
double x,y;
point(){}
point(double _x,double _y):x(_x),y(_y){}
inline friend point operator - (const point &a,const point &b)
{return point(a.x-b.x,a.y-b.y);}
inline friend point operator + (const point &a,const point &b)
{return point(a.x+b.x,a.y+b.y);}
inline friend point operator * (const point &a,const double &b)
{return point(a.x*b,a.y*b);}
inline friend double operator * (const point &a,const point &b)
{return a.x*b.y-a.y*b.x;}
inline double dis(){return x*x+y*y;}
}p[N];
struct line
{
point st,ed;
line(){}
line(point _st,point _ed):st(_st),ed(_ed){}
};
int n,top;
double A,B,c,ans;
inline bool cmp(const point &a,const point &b)
{
double det=(a-p[1])*(b-p[1]);
if(det)return det>0;
return (a-p[1]).dis()<(b-p[1]).dis();
}
void graham()
{
int id=1;
for(int i=2;i<=n;i++)
if((p[i].x<p[id].x)||(p[i].x==p[id].x&&p[i].y<p[id].y))id=i;
swap(p[1],p[id]);sort(p+2,p+n+1,cmp),top=1;
for(int i=2;i<=n;i++)
{
while(top>=2&&(p[top-1]-p[i])*(p[top]-p[i])<=0)top--;
p[++top]=p[i];
}p[n=++top]=p[1];
}
point get_inter(const line &a,const line &b)
{
double s1=(a.st-b.st)*(b.ed-b.st);
double s2=(b.ed-b.st)*(a.ed-b.st);
return a.st+(a.ed-a.st)*(s1/(s1+s2));
}
bool online(const point &a,const line &b)
{
point t1=b.st-a,t2=b.ed-a;
return t1.x*t2.x+t1.y*t2.y<=0;
}
int main()
{
n=getint(),A=getint(),B=getint();
for(int i=1;i<=n;i++)
{
p[i].x=getint(),p[i].y=getint();
c=getint(),p[i].x/=c,p[i].y/=c;
ans=max(ans,min(A/p[i].x,B/p[i].y));
}
graham();
for(int i=1;i<n;i++)if(point(A,B)*(p[i+1]-p[i]))
{
point t=get_inter(line(point(0,0),point(A,B)),line(p[i],p[i+1]));
if(online(t,line(p[i],p[i+1])))ans=max(ans,A/t.x);
}
printf("%0.6lf\n",ans);
return 0;
}