bzoj4445: [Scoi2015]小凸想跑步【半平面交】

Description

小凸晚上喜欢到操场跑步,今天他跑完两圈之后,他玩起了这样一个游戏。
操场是个凸n边形,N个顶点按照逆时针从0~n-l编号。现在小凸随机站在操场中的某个位置,标记为
P点。将P点与n个顶点各连一条边,形成N个三角形。如果这时P点,0号点,1号点形成的三角形的面
积是N个三角形中最小的一个,小凸则认为这是一次正确站位。
现在小凸想知道他一次站位正确的概率是多少。

Input

第1行包含1个整数n,表示操场的顶点数和游戏的次数。
接下来有N行,每行包含2个整数Xi,Yi表示顶点的坐标。
输入保证按逆时针顺序输入点,所有点保证构成一个n多边形。所有点保证不存在三点共线。

Output

输出1个数,正确站位的概率,保留4位小数。

Sample Input

5

1 8

0 7

0 0

8 0

8 8

Sample Output

0.6316

HINT

3<=N<=10^5,-10^9<=X,Y<=10^9

解题思路:

答案就是可行范围/总面积。
设可行的位置坐标为(x,y),根据它与0,1号点围成的面积比与其他边围成的都小,就可以列出形如ax+by+c<=0限制方程,直接半平面交即可。

#include<bits/stdc++.h>
using namespace std; 

int getint()
{
    int i=0,f=1;char c;
    for(c=getchar();(c!='-')&&(c<'0'||c>'9');c=getchar());
    if(c=='-')f=-1,c=getchar();
    for(;c>='0'&&c<='9';c=getchar())i=(i<<3)+(i<<1)+c-'0';
    return i*f;
}

const int N=200005;
struct point
{
    double x,y;
    point(){}
    point(double _x,double _y):x(_x),y(_y){}
    inline friend point operator + (const point &a,const point &b){return point(a.x+b.x,a.y+b.y);}
    inline friend point operator - (const point &a,const point &b){return point(a.x-b.x,a.y-b.y);}
    inline friend point operator * (const point &a,const double &b){return point(a.x*b,a.y*b);}
    inline friend double operator * (const point &a,const point &b){return a.x*b.y-a.y*b.x;}
}p[N];
struct line
{
    point st,v;double ang;
    line(){}
    line(point _st,point _v):st(_st),v(_v){ang=atan2(v.y,v.x);}
    inline friend bool operator < (const line &a,const line &b){return a.ang<b.ang;}
    inline friend bool onleft(const point &a,const line &b){return b.v*(a-b.st)>0;}
    inline friend point get_inter(const line &a,const line &b)
    {
        double s=a.v*b.v,s1=b.v*(a.st-b.st);
        return a.st+a.v*(s1/s);
    }
}l[N];
int n,m;
double totarea,ans;

void HPI()
{
    int head,tail=1;sort(l+1,l+m+1);
    for(int i=2;i<=m;i++)
    {
        if(l[i].ang!=l[tail].ang)l[++tail]=l[i];
        else if(onleft(l[i].st,l[tail]))l[tail]=l[i];
    }
    m=tail,head=tail=1;
    for(int i=2;i<=m;i++)
    {
        while(head<tail&&!onleft(p[tail],l[i]))--tail;
        while(head<tail&&!onleft(p[head+1],l[i]))++head;
        l[++tail]=l[i];
        if(head<tail)p[tail]=get_inter(l[tail],l[tail-1]);
    }
    while(head<tail&&!onleft(p[tail],l[head]))--tail;
    p[head]=p[tail+1]=get_inter(l[tail],l[head]);
    for(int i=head;i<=tail;i++)ans+=p[i]*p[i+1];
    ans/=totarea;
}

int main()
{
    //freopen("lx.in","r",stdin);
    n=getint();
    for(int i=0;i<n;i++)p[i].x=getint(),p[i].y=getint();p[n]=p[0];  
    for(int i=0;i<n;i++)l[++m]=line(p[i],p[(i+1)%n]-p[i]),totarea+=p[i]*p[(i+1)%n];
    for(int i=1;i<n;i++)
    {
        double a=p[1].x+p[i].x-p[0].x-p[i+1].x;
        double b=p[1].y+p[i].y-p[0].y-p[i+1].y;
        double c=p[1].x*p[0].y+p[i].x*p[i+1].y-p[0].x*p[1].y-p[i+1].x*p[i].y;
        if(a)l[++m]=line(point(0,c/a),point(-a,-b));
        else if(b)l[++m]=line(point(-c/b,0),point(0,-b));
    }
    HPI();
    printf("%0.4lf\n",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值