Description
小凸晚上喜欢到操场跑步,今天他跑完两圈之后,他玩起了这样一个游戏。
操场是个凸n边形,N个顶点按照逆时针从0~n-l编号。现在小凸随机站在操场中的某个位置,标记为
P点。将P点与n个顶点各连一条边,形成N个三角形。如果这时P点,0号点,1号点形成的三角形的面
积是N个三角形中最小的一个,小凸则认为这是一次正确站位。
现在小凸想知道他一次站位正确的概率是多少。
Input
第1行包含1个整数n,表示操场的顶点数和游戏的次数。
接下来有N行,每行包含2个整数Xi,Yi表示顶点的坐标。
输入保证按逆时针顺序输入点,所有点保证构成一个n多边形。所有点保证不存在三点共线。
Output
输出1个数,正确站位的概率,保留4位小数。
Sample Input
5
1 8
0 7
0 0
8 0
8 8
Sample Output
0.6316
HINT
3<=N<=10^5,-10^9<=X,Y<=10^9
解题思路:
答案就是可行范围/总面积。
设可行的位置坐标为(x,y),根据它与0,1号点围成的面积比与其他边围成的都小,就可以列出形如ax+by+c<=0限制方程,直接半平面交即可。
#include<bits/stdc++.h>
using namespace std;
int getint()
{
int i=0,f=1;char c;
for(c=getchar();(c!='-')&&(c<'0'||c>'9');c=getchar());
if(c=='-')f=-1,c=getchar();
for(;c>='0'&&c<='9';c=getchar())i=(i<<3)+(i<<1)+c-'0';
return i*f;
}
const int N=200005;
struct point
{
double x,y;
point(){}
point(double _x,double _y):x(_x),y(_y){}
inline friend point operator + (const point &a,const point &b){return point(a.x+b.x,a.y+b.y);}
inline friend point operator - (const point &a,const point &b){return point(a.x-b.x,a.y-b.y);}
inline friend point operator * (const point &a,const double &b){return point(a.x*b,a.y*b);}
inline friend double operator * (const point &a,const point &b){return a.x*b.y-a.y*b.x;}
}p[N];
struct line
{
point st,v;double ang;
line(){}
line(point _st,point _v):st(_st),v(_v){ang=atan2(v.y,v.x);}
inline friend bool operator < (const line &a,const line &b){return a.ang<b.ang;}
inline friend bool onleft(const point &a,const line &b){return b.v*(a-b.st)>0;}
inline friend point get_inter(const line &a,const line &b)
{
double s=a.v*b.v,s1=b.v*(a.st-b.st);
return a.st+a.v*(s1/s);
}
}l[N];
int n,m;
double totarea,ans;
void HPI()
{
int head,tail=1;sort(l+1,l+m+1);
for(int i=2;i<=m;i++)
{
if(l[i].ang!=l[tail].ang)l[++tail]=l[i];
else if(onleft(l[i].st,l[tail]))l[tail]=l[i];
}
m=tail,head=tail=1;
for(int i=2;i<=m;i++)
{
while(head<tail&&!onleft(p[tail],l[i]))--tail;
while(head<tail&&!onleft(p[head+1],l[i]))++head;
l[++tail]=l[i];
if(head<tail)p[tail]=get_inter(l[tail],l[tail-1]);
}
while(head<tail&&!onleft(p[tail],l[head]))--tail;
p[head]=p[tail+1]=get_inter(l[tail],l[head]);
for(int i=head;i<=tail;i++)ans+=p[i]*p[i+1];
ans/=totarea;
}
int main()
{
//freopen("lx.in","r",stdin);
n=getint();
for(int i=0;i<n;i++)p[i].x=getint(),p[i].y=getint();p[n]=p[0];
for(int i=0;i<n;i++)l[++m]=line(p[i],p[(i+1)%n]-p[i]),totarea+=p[i]*p[(i+1)%n];
for(int i=1;i<n;i++)
{
double a=p[1].x+p[i].x-p[0].x-p[i+1].x;
double b=p[1].y+p[i].y-p[0].y-p[i+1].y;
double c=p[1].x*p[0].y+p[i].x*p[i+1].y-p[0].x*p[1].y-p[i+1].x*p[i].y;
if(a)l[++m]=line(point(0,c/a),point(-a,-b));
else if(b)l[++m]=line(point(-c/b,0),point(0,-b));
}
HPI();
printf("%0.4lf\n",ans);
return 0;
}