bzoj3637: Query on a tree VI【LCT】

题目大意:

有一棵黑白树,要求支持两种操作:1.单点颜色翻转;2.询问某点同色连通块大小。
n,m<=100000

解题思路:

考虑用LCT维护一棵黑树,一棵白树,维护连通树size。

但是还有一个问题没有解决,如果改色时暴力link-cut,显然菊花图时修改的边数可以达到O(n)级别

于是就有了一个巧妙的写法,当一个点从白变黑时,只在白树里cut掉它和父亲的边,只在黑树里link上它和父亲的边,也就是保证黑白树中的每条边的儿子一定是黑/白色的,父亲则可能是其他颜色

询问时找到最浅的点,白点就在白树里询问,黑点就在黑树里询问,但要注意根要特判,同色即是size[root],否则是size[son[root][1]]。

注意由于要维护最浅的点,所以link,cut不能makeroot,要换另一种写法,详见代码。

#include<bits/stdc++.h>
#define ll long long
using namespace std;
int getint()
{
    int i=0,f=1;char c;
    for(c=getchar();(c!='-')&&(c<'0'||c>'9');c=getchar());
    if(c=='-')c=getchar(),f=-1;
    for(;c>='0'&&c<='9';c=getchar())i=(i<<3)+(i<<1)+c-'0';
    return i*f;
}
const int N=100005;
int n,m,ans,c[N],fa[N];
int tot,first[N],nxt[N<<1],to[N<<1];
struct LCT
{
    int fa[N],son[N][2],size[N],val[N];
    inline int which(int x){return son[fa[x]][1]==x;}
    inline bool rt(int x){return son[fa[x]][0]!=x&&son[fa[x]][1]!=x;}
    inline void update(int x){size[x]=size[son[x][0]]+size[son[x][1]]+val[x];}
    inline void rotate(int x)
    {
        int y=fa[x],z=fa[y],t=which(x);
        if(!rt(y))son[z][which(y)]=x;
        fa[x]=z,fa[y]=x;
        son[y][t]=son[x][t^1],son[x][t^1]=y;
        if(son[y][t])fa[son[y][t]]=y;
        update(y),update(x);
    }
    inline void splay(int x)
    {
        while(!rt(x))
        {
            if(!rt(fa[x]))rotate(which(x)==which(fa[x])?fa[x]:x);
            rotate(x);
        }
    }
    inline void access(int x)
    {
        for(int y=0;x;y=x,x=fa[x])
        {
            splay(x),val[x]+=size[son[x][1]],val[x]-=size[y];
            son[x][1]=y,update(x);
        }
    }
    inline int findroot(int x)
    {
        access(x),splay(x);
        while(son[x][0])x=son[x][0];
        return x;
    }
    void link(int x,int y)
    {
        access(y),splay(y),splay(x);  
        fa[x]=y,val[y]+=size[x],update(y);  
    }
    void cut(int x,int y)
    {
        access(x),splay(x),fa[son[x][0]]=0,son[x][0]=0,update(x);
    }
    int query(int x)
    {
        int y=findroot(x);splay(y);
        return c[y]==c[x]?size[y]:size[son[y][1]];
    }
}lct[2];
void add(int x,int y)
{
    nxt[++tot]=first[x],first[x]=tot,to[tot]=y;
}
void dfs(int u)
{
    c[u]=lct[0].val[u]=lct[0].size[u]=lct[1].val[u]=lct[1].size[u]=1;
    if(fa[u])lct[1].link(u,fa[u]);
    for(int e=first[u];e;e=nxt[e])
    {
        int v=to[e];if(v==fa[u])continue;
        fa[v]=u,dfs(v);
    }
}
int main()
{
    //freopen("lx.in","r",stdin);
    //freopen("lx.out","w",stdout);
    n=getint();
    for(int i=1;i<n;i++)
    {
        int x=getint(),y=getint();
        add(x,y),add(y,x);
    }
    dfs(1);
    m=getint();
    while(m--)
    {
        int op=getint(),x=getint();
        if(op)
        {
            if(fa[x])lct[c[x]].cut(x,fa[x]),lct[c[x]^1].link(x,fa[x]);
            c[x]^=1;
        }
        else printf("%d\n",lct[c[x]].query(x));
    }
    return 0;
}
阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/cdsszjj/article/details/80332588
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

bzoj3637: Query on a tree VI【LCT】

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭