bzoj4944: [Noi2017]泳池【概率dp+特征多项式】

题目大意:

有一个 1001×n 1001 × n 的的网格,每个格子有 q q 的概率是安全的,1q的概率是危险的。
定义一个矩形是合法的当且仅当:
1.这个矩形中每个格子都是安全的
2.必须紧贴网格的下边界
问你最大的合法子矩形大小恰好为 k k 的概率是多少。

解题思路:

首先求恰好为k的概率一般转化为求 k ≤ k 的概率减去 k1 ≤ k − 1 的概率。

如何求 k ≤ k 的概率的概率呢?

fi,j f i , j 表示一段长度为 j j 的海滩,前i行默认没有障碍(前 i i 行概率当1算),第i+1行有障碍,最大子矩阵不超过 k k 的概率,那么我们顺次枚举第i行危险的格子,得到转移方程有
fi,j=t=1jkil>i(fk,t1q(ki)(t1))(1q)(fl,jtq(li)(li)) f i , j = ∑ t = 1 j ∑ k ≥ i ∑ l > i ( f k , t − 1 q ( k − i ) ( t − 1 ) ) ( 1 − q ) ( f l , j − t q ( l − i ) ( l − i ) )
也就是将左右两部分拼起来,中间定一个危险的格子限制高度,令 ijk i ∗ j ≤ k ,再用前缀和优化( Fi,j=kifk,j F i , j = ∑ k ≥ i f k , j ),复杂度为 O(k2) O ( k 2 )

统计答案时设 ansi a n s i 表示前 i i 列合法的概率,则有:
ansi=F1,iqi+j=1iansij(1q)(F1,j1qj1),ik
ansi=j=1k+1ansij(1q)(F1,j1qj1),i>k a n s i = ∑ j = 1 k + 1 a n s i − j ( 1 − q ) ( F 1 , j − 1 q j − 1 ) , i > k
也就是限制每段安全长度不超过 k k

注意到如果我们计算出ans1ansk,后面的 ansi=k+1j=1ajansij a n s i = ∑ j = 1 k + 1 a j a n s i − j 是常系数齐次递推式,可以利用特征多项式优化矩阵快速幂至 O(k2logk) O ( k 2 l o g k ) ,这样就做完了。

#include<bits/stdc++.h>
#define ll long long
using namespace std;
int getint()
{
    int i=0,f=1;char c;
    for(c=getchar();(c!='-')&&(c<'0'||c>'9');c=getchar());
    if(c=='-')c=getchar(),f=-1;
    for(;c>='0'&&c<='9';c=getchar())i=(i<<3)+(i<<1)+c-'0';
    return i*f;
}
const int N=2005,mod=998244353;
int n;
ll Pow_q[N],f[N][N],g[N],a[N],b[N],c[N],ans[N],q,p;
int Pow(ll x,int y)
{
    ll res=1;
    for(;y;y>>=1,x=x*x%mod)
        if(y&1)res=res*x%mod;
    return res;
}
void mul(ll *a,ll *b,int k)
{
    for(int i=0;i<=2*k;i++)c[i]=0;
    for(int i=0;i<=k;i++)
        for(int j=0;j<=k;j++)
            c[i+j]=(c[i+j]+a[i]*b[j])%mod;
    for(int i=2*k;i>=k+1;i--)
    {
        for(int j=0;j<=k;j++)
            c[i-k-1+j]=(c[i-k-1+j]+c[i]*g[k+1-j])%mod;
        c[i]=0;
    }
    for(int i=0;i<=k;i++)a[i]=c[i];
}
void Pow(ll *a,int y,ll *b,int k)
{
    b[0]=1;
    for(;y;y>>=1,mul(a,a,k))
        if(y&1)mul(b,a,k);
}
int solve(int k)
{
    if(!k)return Pow(p,n);
    memset(f,0,sizeof(f));
    f[k+1][0]=1;
    for(int i=k;i;i--)
    {
        f[i][0]=1;
        int m=min(n,k/i);
        for(int j=0;j<=m;j++)g[j]=f[i+1][j]*Pow_q[j]%mod*p%mod;
        for(int j=1;j<=m;j++)
        {
            for(int t=0;t<j;t++)
                f[i][j]=(f[i][j]+g[t]*f[i][j-t-1])%mod;
            f[i][j]=(f[i][j]+f[i+1][j]*Pow_q[j])%mod;
        }
    }
    for(int i=1;i<=k+1;i++)g[i]=f[1][i-1]*Pow_q[i-1]%mod*p%mod;
    ans[0]=1;
    for(int i=1;i<=k;i++)
    {
        ans[i]=f[1][i]*Pow_q[i]%mod;
        for(int j=1;j<=i;j++)ans[i]=(ans[i]+g[j]*ans[i-j])%mod;
    }
    if(n<=k)return ans[n];
    memset(a,0,sizeof(a)),memset(b,0,sizeof(b));
    a[1]=1;Pow(a,n,b,k);
    ll res=0;
    for(int i=0;i<=k;i++)res=(res+b[i]*ans[i])%mod;
    return (res+mod)%mod;
}
int main()
{
    //freopen("lx.in","r",stdin);
    n=getint();int k=getint();ll x=getint(),y=getint();
    q=x*Pow(y,mod-2)%mod,p=(1-q+mod)%mod;
    Pow_q[0]=1;
    for(int i=1;i<=k;i++)Pow_q[i]=Pow_q[i-1]*q%mod;
    printf("%d\n",(solve(k)-solve(k-1)+mod)%mod);
}
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值