【华为机试】iNOC产品部-杨辉三角的变形

题目描述

            1

         1  1  1

      1  2  3  2  1

   1  3  6  7  6  3  1

1  4  10 16 19  16 10  4  1

以上三角形的数阵,第一行只有一个数1,以下每行的每个数,是恰好是它上面的数,左上角数到右上角的数,3个数之和(如果不存在某个数,认为该数就是0)。

求第n行第一个偶数出现的位置。如果没有偶数,则输出-1。例如输入3,则输出2,输入4则输出3。

输入n(n <= 1000000000)

输入描述:

输入一个int整数

输出描述:

输出返回的int值

示例1

输入

4

输出

3

方法1分析:一是找规律,前2行直接输出-1,奇数行输出2,能被4整除的行输出3,不能被4整除的输出4。

#include<iostream>
using namespace std;

int main(){
	int n;
	while (cin >> n){
		if (n < 3)  cout << -1 << endl;
		else if (n % 2 == 1) cout << 2 << endl;
		else if (n % 4 == 0) cout << 3 << endl;
		else cout << 4 << endl;
	}
	return 0;
}

方法2分析:老老实实的把每一行求出来,我们发现每一行的前两个是直接知道的,第三个到倒数第三个等于上一行正对应的连续3个数之和。

#include<iostream>
#include <vector>
using namespace std;
inline int index(int n){
	vector<vector<int>> res;
	res.push_back(vector<int>(1, 1));  //添加第一行;
	res.push_back(vector<int>(3, 1));  //添加第二行;
	for (int i = 2; i < n; ++i){  //第i行的第二个和倒数第二个为i,从第三行开始;
		vector<int> temp(2*i + 1, 1);
		temp[1] = temp[i * 2 - 1] = i;
		res.push_back(temp);
	}
	for (int i = 2; i < n; ++i){   //求第i行的第三个到倒数第三个,从第三行开始;
		for (int j = 2; j < 2 * i - 1; ++j)
			res[i][j] = res[i - 1][j - 2] + res[i-1][j-1] + res[i-1][j];
	}
	for (int i = 0; i < n; ++i)
		if (res[n - 1][i] % 2 == 0) return i+1;
	return -1;
}

int main(){
	int n,k;
	while (cin >> n)  cout<<index(n) << endl;
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值